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In our multisensory world, we often rely more on auditory information than on visual input for
temporal processing. One typical demonstration of this is that the rate of auditory flutter assimilates
the rate of concurrent visual flicker. To date, however, this auditory dominance effect has largely
been studied using regular auditory rhythms. It thus remains unclear whether irregular rhythms
would have a similar impact on visual temporal processing, what information is extracted from the
auditory sequence that comes to influence visual timing, and how the auditory and visual temporal
rates are integrated together in quantitative terms. We investigated these questions by assessing, and
modeling, the influence of a task-irrelevant auditory sequence on the type of “Ternus apparent
motion”: group motion versus element motion. The type of motion seen critically depends on
the time interval between the two Ternus display frames. We found that an irrelevant auditory
sequence preceding the Ternus display modulates the visual interval, making observers perceive
either more group motion or more element motion. This biasing effect manifests whether the
auditory sequence is regular or irregular, and it is based on a summary statistic extracted from the
sequential intervals: their geometric mean. However, the audiovisual interaction depends on
the discrepancy between the mean auditory and visual intervals: if it becomes too large, no
interaction occurs—which can be quantitatively described by a partial Bayesian integration model.
Overall, our findings reveal a cross-modal perceptual averaging principle that may underlie complex
audiovisual interactions in many everyday dynamic situations.

Keywords: perceptual averaging, auditory timing, visual apparent motion, multisensory interaction,
Bayesian integration

Most stimuli and events in our everyday environments are
multisensory. It is thus no surprise that our brain often combines a
heard sound with a seen stimulus source, even if they are in
conflict. One typical such phenomenon, in a performance we
enjoy, is the ventriloquism effect (Chen & Vroomen, 2013; Occelli,
Bruns, Zampini, & Röder, 2012; Recanzone, 2009; Slutsky &
Recanzone, 2001): we perceive the ventriloquist’s voice as coming
from the mouth of a dummy as if it was the dummy that is

speaking. Of note in the present context, audiovisual integration
has not only been demonstrated in spatial localization, but also in
the temporal domain. In contrast to the dominance of vision in
audiovisual spatial perception, audition dominates temporal pro-
cessing, such as in rhythms and intervals. As an example, think of
how we tend to “auditorize” a conductor’s arm movements coor-
dinating a musical passage, or Morse code flashes emanating from
a naval ship. In fact, neuroscience evidence has revealed that
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information for time estimation is encoded in the primary auditory
cortex for both visual and auditory events (Kanai, Lloyd, Bueti, &
Walsh, 2011). This is consistent with the proposal that the percep-
tual system automatically abstracts temporal structure from rhyth-
mic visual sequences and represents this structure using an audi-
tory code (Guttman, Gilroy, & Blake, 2005).

Another compelling demonstration of how auditory rhythm in-
fluences visual tempo is known as the auditory driving effect
(Boltz, 2017; Gebhard & Mowbray, 1959; Knox, 1945; Shipley,
1964): the phenomenon that variations in auditory flutter rate may
noticeably influence the rate of perceived visual flicker. This
influence, though, is dependent on the disparity between the au-
ditory and visual rates (Recanzone, 2003). Quantitatively, this
influence has been described by a Bayesian model of audiovisual
integration (Roach, Heron, & McGraw, 2006), which assumes that
the brain takes into account prior knowledge about the discrepancy
between the auditory and visual rates in determining the degree of
audiovisual integration. Auditory driving is a robust effect that
generalizes across different types of tasks, including temporal
adjustment and production (Myers, Cotton, & Hilp, 1981) and
perceptual discrimination (Welch, DutionHurt, & Warren, 1986),
and it may even be seen in the effect of one single auditory interval
on a subsequent visual interval (Burr, Della Rocca, & Morrone,
2013).

It should be noted, however, that auditory driving has primarily
been investigated using regular rhythms, the implicit assumption
being that the mean auditory rate influences the mean visual rate.
On the contrary, studies on ensemble coding (Alvarez, 2011;
Ariely, 2001) suggest that perceptual averaging can be rapidly

accomplished even from a set of variant objects or events; for
example, we can quickly estimate the average size of apples in a
supermarket display, or the average tempo of a piece of music.
With regard to the present context, audiovisual integration, it
remains an open question how the average tempo in audition
quantitatively influences the temporal processing of visual
events—an issue that becomes prominent as the mechanisms un-
derlying perceptual averaging processes themselves are still a
matter of debate. There is evidence that the mental scales under-
lying the representation of magnitudes (e.g., visual numerosity and
temporal durations) are nonlinear rather than linear (Allan &
Gibbon, 1991; Dehaene, Izard, Spelke, & Pica, 2008; Nieder &
Miller, 2003). It has also been reported that, in temporal bisection
(i.e., comparing one interval with two reference intervals), the
subjective midpoint between one short and one long reference
duration is closer to their geometric, rather than their arithmetic,
mean (Allan & Gibbon, 1991). However, it remains to be estab-
lished whether temporal rate averaging obeys the principle of the
arithmetic mean (AM) or the geometric mean (GM), which might
have implications for a broad range of mechanisms coding “mag-
nitude” in perception (Walsh, 2003).

On these grounds, the aim of the present study was to quantify
temporal rate averaging in a crossmodal, audiovisual scenario
using irregular auditory sequences. To this end, we adopted and
extended the Ternus temporal ventriloquism paradigm (Shi, Chen,
& Müller, 2010), which we used previously to investigate cross-
modal temporal integration. In the standard Ternus temporal ven-
triloquism paradigm, two auditory beeps are paired with two visual
Ternus frames. Visual Ternus displays (Figure 1) can elicit two
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Figure 1. Ternus display and stimulus configurations. Two alternative motion percepts of the Ternus display:
(A) “element” motion for short interstimulus intervals (ISIs), with the middle dot perceived as remaining static
while the outer dots are perceived to move from one side to the other, and (B) “group” motion for long ISIs, with
the two dots perceived as moving in tandem. (C) Schematic illustration of the stimulus configurations used in
the experiments. The auditory sequence consisted of 8–10 beeps. Two of the beeps (the 6th and the 7th) were
synchronously paired with two visual Ternus frames which were separated by a visual ISI (ISIV) that varied from
50 to 230 ms (for the critical beeps, ISIV � ISIA). The other auditory ISIs (ISIA) were systematically manipulated
such that the mean of the ISIA preceding the visual Ternus display was 50–70 ms shorter than, equal to, or 50–70
ms longer than the transition threshold between the element- and group-motion percepts of the visual Ternus
events. The transition threshold was first estimated individually for each observer in a pretest session. During the
experiment, observers were simply asked to indicate the type of visual motion (element or group) that they had
perceived, while ignoring the beeps.
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distinct percepts of visual apparent motion: element or group
motion, where the type of apparent motion is mainly determined
by the visual interstimulus interval (ISIV) between the two display
frames (with other stimulus settings being fixed). Element motion
is typically observed with short ISIV (e.g., of 50 ms), and group
motion with long ISIV (e.g., of 230 ms; see Figure 1A and 1B).
When two beeps are presented in temporal proximity to, or syn-
chronously with, the two visual frames, the beeps can systemati-
cally bias the transition threshold between the two types of visual
apparent motion: either toward element motion (if the auditory
interval, ISIA, is shorter than the visual interval) or toward group
motion (if ISIA is longer than the visual interval; Shi et al., 2010).
Similar temporal ventriloquism effects have also been found with
other tasks, such as temporal order judgments (for a review, see
Chen & Vroomen, 2013). Here, we extended the Ternus temporal
ventriloquism paradigm by presenting a whole sequence of beeps
prior to the Ternus display frames, in addition to the two beeps
paired with Ternus frames (see Figure 1C; recall that previous
studies had presented just the latter two beeps) to examine the
influence of the temporal averaging of auditory intervals on visual
apparent motion.

Experiment 1 was designed, in the first instance, to demonstrate
an auditory driving effect using this new paradigm. In Experiment
2, we went on to examine whether temporal averaging with irreg-
ular auditory sequences would have a similar impact on visual
apparent motion. In Experiment 3, we manipulated the variability
of the auditory sequence to examine for (and quantify) influences
of the variability of the auditory intervals on visual apparent
motion. In Experiment 4, we further determined which types of
temporal averaging statistics, the AM or the GM of the auditory
intervals, influences visual Ternus apparent motion. And Experi-
ment 5 was designed to rule out a potential confound, namely, a
“recency” effect—with the last auditory interval dominating the
Ternus motion percept—in the cross-modal temporal averaging.
Finally, we aimed to identify the computational model that best
describes the cross-modal temporal interaction: mandatory full
Bayesian integration versus partial integration (Ernst & Banks,
2002; Roach et al., 2006).

Materials and Method

Participants

A total of 84 participants (21, 22, 16, 12, 12 in Experiments 1–5;
ages ranging from 18–33 years) took part in the main experiments.
All observers had normal or corrected-to-normal vision and re-
ported normal hearing. The experiments were performed in com-
pliance with the institutional guidelines set by the Academic
Affairs Committee of the Department of Psychology, Peking Uni-
versity (approved protocol of “#Perceptual averaging [2012-03-
01]”). All observers provided written informed consent according
to the institutional guidelines prior to participating and were paid
for their time on a basis of 20 CNY/hr.

The number of participants recruited for Experiments 1 and 2
was based on the effect size in our previous study of the temporal
Ternus ventriloquism effect (Shi et al., 2010), where the pairing of
auditory beeps with the visual Ternus displays yielded a Cohen’s
d greater than 1 for the modulation of the Ternus motion percept.
We thus used a conservative effect size of 0.25 and a power of 0.8

for the estimation and recruited more than the estimated sample
size (of 15 participants). Given that the effects we aimed to
examine turned out to be quite reliable, we used a standard sample
size of 12 participants in Experiments 4 and 5.

Apparatus and Stimuli

The experiments were conducted in a dimly lit (luminance: 0.09
cd/m2) cabin. Visual stimuli were presented in the central region of
a 22-in. CRT monitor (FD 225P, Qing Dao, China), with a screen
resolution of 1,024 � 768 pixels and a refresh rate of 100 Hz.
Viewing distance was 57 cm, maintained by using a chin rest.

A visual Ternus display consisted of two stimulus frames, each
containing two black disks (l0.24 cd/m2; disk diameter and sepa-
ration between disks: 1.6° and 3° of visual angle, respectively)
presented on a gray background (16.1 cd/m2). The two frames
shared one element location at the center of the monitor, while
containing two other elements located at horizontally opposite
positions relative to the center (see Figure 1). Each frame was
presented for 30 ms; the interstimulus interval (ISIV) between the
two frames was randomly selected from the range of 50–230 ms,
with a step size of 30 ms.

Mono sound beeps (1000 Hz, 65 dB, 30 ms) were generated and
delivered via an M-Audio card (Delta 1010, Bei Jing, China) to a
headset (Philips SHM1900, Bei Jing, China). To ensure accurate
timing of the auditory and visual stimuli, the duration of the visual
stimuli and the synchronization of the auditory and visual stimuli
were controlled via the monitor’s vertical synchronization pulses.
The experimental program was written with Matlab (Mathworks,
Natick, MA) and the Psychophysics Toolbox (Brainard, 1997).

Experimental Design

Practice. Prior to the formal experiment, participants were
familiarized with visual Ternus displays of either typical element
motion (with an ISIV of 50 ms) or typical group motion (ISIV of
260 ms) in a practice block. They were asked to discriminate the
two types of apparent motion by pressing the left or the right
mouse button, respectively. The mapping between response button
and type of motion was counterbalanced across participants. Dur-
ing practice, when a response was made that was inconsistent with
the typical motion percept, immediate feedback appeared on the
screen showing the typical response (i.e., element or group mo-
tion). The practice session continued until the participant reached
a conformity of 95%. All participants achieved this criterion within
120 trials, given that the two extreme ISIs used (50 and 260 ms,
respectively) gave rise to nonambiguous percepts of either element
motion or group motion.

Pretest. For each participant, the transition threshold between
element and group motion was determined in a pretest session. A
trial began with the presentation of a central fixation cross for 300
to 500 ms. After a blank screen of 600 ms, the two Ternus frames
were presented synchronized with two auditory tones (i.e., base-
line: ISIV � ISIA); this was followed by a blank screen of 300 to
500 ms, prior to a screen with a question mark prompting the
participant to make a two-forced-choice response indicating the
type of perceived motion (element or group motion). The ISIV

between the two visual frames was randomly selected from one of
the following seven intervals: 50, 80, 110, 140, 170, 200, and 230
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ms. There were 40 trials for each level of ISIV, counterbalanced
with left- and rightward apparent motion. The presentation order of
the trials was randomized for each participant. Participants per-
formed a total of 280 trials, divided into four blocks of 70 trials
each. After completing the pretest, the psychometric curve was
fitted to the proportions of group motion responses across the
seven intervals (see the Data Analysis and Modeling section). The
transition threshold, that is, the point of subjective equality (PSE)
at which the participant was equally likely to report the two motion
percepts, was calculated by estimating the ISI at the point on the
fitted curve that corresponded to 50% of group motion reports. The
just noticeable difference (JND), an indicator of the sensitivity of
apparent motion discrimination, was calculated as half of the
difference between the lower (25%) and upper (75%) bounds of
the thresholds from the psychometric curve.

Main experiments. In the main experiments, the procedure of
visual stimulus presentation was the same as in the pretest session,
except that prior to the occurrence of the two Ternus display
frames, an auditory sequence consisting of a variable number of
6–8 beeps was presented (see below for the details of the onset of
the Ternus display frames relative to that of the auditory se-
quence). As in the pretest, the onset of the two visual Ternus
frames (each presented for 30 ms) was accompanied by a (30-ms)
auditory beep (i.e., ISIV � ISIA). A trial began with the presen-
tation of a central fixation marker, randomly for 300 to 500 ms.
After a 600-ms blank interval, the auditory train and the visual
Ternus frames were presented (see Figure 1c), followed sequen-
tially by a blank screen of 300 to 500 ms and a screen with a
question mark at the screen center prompting participants to indi-
cate the type of motion they had perceived: element versus group
motion (nonspeeded response). Participants were instructed to
focus on the visual task, ignoring the sounds. After the response,
the next trial started following a random intertrial interval of 500
to 700 ms.

In Experiment 1 (regular sound sequence), the audiovisual Ter-
nus frames was preceded by an auditory sequence of 6–8 beeps
with a constant interstimulus interval (ISIA), manipulated to be 70
ms shorter than, equal to, or 70 ms longer than the transition
threshold estimated in the pretest. The total auditory sequence
consisted of 8–10 beeps, including those accompanying the two
visual Ternus frames, with the latter being inserted mainly at the
sixth–seventh positions, and followed by 0–2 beeps (number se-
lected at random), to minimize expectations as to the onset of the
visual Ternus frames. Visual Ternus frames were presented on
75% of all trials (504 trials in total). The remaining 25% were
catch trials (168 trials) to break up anticipatory processes. All trials
were randomized and organized into 12 blocks, each block con-
taining 56 trials. The ISIV between the two visual Ternus frames
was randomly selected from one of the following seven intervals:
50, 80, 110, 140, 170, 200, and 230 ms.

In Experiment 2 (irregular sound sequence), the settings were
the same as in Experiment 1, except that the auditory trains were
irregular: the ISIA between adjacent beeps in the auditory train
(except the ISIA between the beeps accompanying the visual
Ternus frames) were varied �20 ms uniformly and randomly
around (i.e., they were either 20 ms shorter or 20 ms longer than)
a given mean interval (three levels: 70 ms shorter than, equal to, or
70 ms longer than the individual transition threshold).

Experiment 3 introduced two levels of variability in the
auditory-interval sequences with 8–10 beeps: a low coefficient of
variance (CV, the standard deviation divided by the mean) of 0.1
and, respectively, a high CV of 0.3. For each CV condition, three
AM intervals were used: 50 ms shorter than, equal to, or 50 ms
longer than the estimated transition threshold. The intervals were
randomly generated from a normal distribution with a given mean
and CV. The number of the experimental trials was 1,008, and the
catch trials totaled 336. All trials were randomized and organized
into 24 blocks, each block containing 56 trials.

Experiment 4 used three types of auditory sequences, each
consisting of six intervals: (a) baseline auditory sequence: three
intervals, of 110, 140, and 170 ms, were repeated twice in random
order; in this baseline condition, the AM (AM � 140 ms) was
near-equal to the GM (GM � 138 ms); (b) AM-deviated (AriM)
sequence: six intervals were constructed from ISIAs of 70, 140,
and 280 ms, which were arranged randomly (AM � 163 ms �
GM � 140 ms); and (c) GM-deviated (GeoM) sequence: six
intervals constructed from ISIAs of 50, 140, and 230 ms, arranged
randomly (GM � 117 ms � AM � 140 ms). The audiovisual
Ternus frames were appended at the end of these sequences. The
number of experimental trials was 504 (there were no catch trials),
which were presented randomized and organized in 12 blocks,
each block containing 42 trials.

To exclude potential confounding by a recency effect, in Ex-
periment 5, we compared two auditory sequences: one with a GM
70 ms shorter than the transition threshold of visual Ternus motion
(henceforth referred to as the “short” condition), and the other with
a GM 70 ms longer than the transition threshold (“long” condi-
tion). Instead of completely randomizing the five auditory intervals
(excepting the final synchronous auditory interval with the visual
Ternus interval), the last auditory interval before the onset of the
Ternus display was fixed at the transition threshold for both
sequences. The remaining four intervals were chosen randomly
such that the CV of the auditory sequence was in the range
between 0.1 and 0.2. This manipulation was expected to minimize
the influence of any potential recency effect engendered by the last
auditory interval. The audiovisual Ternus frames were appended at
the end of these sequences on trials (i.e., 672 out of a total of 784
trials) on which the Ternus display appeared at the end of the
sound sequence (the “onset” of the first visual frame was synchro-
nized with the 6th beep). The remaining (112) trials were catch
trials, with 56 trials each in which the Ternus displays occurred at
the beginning of the sound sequence (i.e., the onset of the first
visual frame was synchronized with the second beep) or, respec-
tively, at middle temporal locations (i.e., the onset of the first
visual frame was synchronized with the 4th beep). These catch
trials were introduced to prevent participants from consistently
anticipating the visual events to occur at the end of the sound
sequence. The total 784 trials were randomized and organized in
14 blocks, each block containing 56 trials.

Data Analysis and Modeling

We used the R package Quickpsy (Linares & López-Moliner,
2016) to fit psychometric curves with upper and lower asymptotes,
which provide better estimates of the thresholds (Wichmann &
Hill, 2001). Bayesian modeling was also conducted with R. We
first calculated the response proportions for the baseline tests with
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(audio-) visual Ternus apparent motion and for the formal exper-
iments, as well as fitting the corresponding cumulative Gaussian
psychometric functions. Based on the psychometric functions, we
could then estimate the discrimination variability of Ternus appar-
ent motion (i.e., �m) based on the standard deviation of the
cumulative Gaussian function. The parameters of the Bayesian
models (see Bayesian modeling section below) were estimated by
minimizing the prediction errors using the R optim function. Our
raw data, together with the source code of statistical analyses and
Bayesian modeling, are available at the github repository: https://
github.com/msenselab/temporal_averaging.

Results

Experiments 1 and 2: Both Regular and Irregular
Auditory Intervals Alter the Visual Motion Percept

We manipulated the intervals between successive beeps (i.e., the
ISIA prior to the Ternus display) to be either regular or irregular,
but with their AM being either 70 ms shorter, equal to, or 70 ms
longer than the transition threshold (measured in the pretest)

between element- and group-motion reports (for both regular and
irregular ISIA). Auditory sequences with a relatively long mean
auditory interval, as compared with a short interval, were found to
elicit more reports of group motion, as indicated by the smaller
PSEs (Figure 2), for both regular intervals, F(2, 40) � 12.22, p �
.001, �g

2 � 0.112, and irregular intervals, F(2, 42) � 8.25, p �
.001, �g

2 � 0.04. That is, the perceived visual interval (which
determines the ensuing motion percept) was assimilated by the
average of the preceding auditory intervals, regardless of whether
the auditory intervals were regular or irregular. Post hoc Bonfer-
roni comparison tests revealed that this assimilation effect was
mainly driven by the short auditory intervals in both experiments:
ps were 0.001, 0.00001, and 0.57 for the comparisons: 	70 versus
0 ms, 	70 versus 70 ms, and, respectively, 0 versus 70 ms for the
regular intervals; and 0.015, 0.0002, 0.77 for the comparisons of
the irregular intervals (Figure 2C and 2D).

The fact that a crossmodal assimilation effect was obtained even
with irregular auditory sequences suggests that the effect is un-
likely due to temporal expectation, or a general effect of auditory
entrainment (Jones, Moynihan, MacKenzie, & Puente, 2002;
Large & Jones, 1999). In addition, the assimilation effect observed
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Figure 2. The average means of both regular and irregular auditory sequences influence the visual motion
percept. (A) Regular auditory-sequence condition: For a typical participant, mean proportions of group-motion
responses as a function of the probe visual interval (ISIv), and fitted psychometric curves, for auditory sequences
with different (arithmetic) mean intervals relative to the individual transition thresholds; the relative-interval
labels (	70, 0, and 70) denote the three conditions of the mean auditory interval being 70 ms shorter than, equal
to, and 70 ms longer than the pretest transition threshold, respectively. (B) Irregular auditory-sequence condition:
for a typical participant, mean proportions of group-motion responses and fitted psychometric curves. (C) Mean
points of subjective equality (PSEs) as a function of the relative auditory interval for the regular-sequence
condition; error bars represent standard errors of the means. (D) Mean PSEs as a function of the relative auditory
interval for the irregular-sequence condition; error bars represent standard errors of the means. � p � .05.
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is unlikely due to a recency effect. To examine for such an effect,
we split the trials into two categories according to the auditory
interval that just preceded the visual Ternus interval: short and
long preceding intervals with reference to the auditory mean
interval. The length of the immediately preceding interval failed to
produce any significant modulation of apparent visual motion, F(1,
22) � 2.14, p � .15. An account in terms of a recency effect was
further ruled out by a dedicated control experiment that directly
fixed the last auditory interval (see Experiment 5 below).

Furthermore, in the regular condition, the mean JNDs (�SE) for
the three ISIV conditions (34.9 [�3.1], 30.5 [�3.4], and 28.4
[�2.9] ms for the ISIV 70 ms shorter, equal to, and, respectively,
70 ms longer relative to the transition threshold) were larger than
the JND for the threshold (baseline) condition (18.8 [�1.2] ms;
p � .001, p � .002, and p � .033 for the shorter, equal, and longer
conditions vs. the “threshold”), without differing among them-
selves (all ps �0.1). The same held true for the irregular condition:
JNDs of 31.8 (�3.2), p � .001, 30.6 (�2.3), p � .005, and 27.2
(�2.2) ms compared with the baseline 18.6 (�2.1) ms, without
differing among themselves (all ps �0.1). The worsened sensitiv-
ities in the three conditions with auditory beep trains suggest that
the assimilation effect observed here was not attributable to atten-
tional entrainment, as attentional entrainment would have been
expected to enhance the sensitivity.

Experiment 3: Variability of Auditory Intervals
Influences Visual Ternus Apparent Motion

According to quantitative models of multisensory integration
(Ernst & Di Luca, 2011; Shi, Church, & Meck, 2013), the strength
of the assimilation effect would be determined by the variability of
both the auditory intervals and the visual Ternus interval, assuming
that information is integrated from all intervals. According to
optimal full integration, high variance of the auditory sequence
would result in a low auditory weight in audiovisual integration,

leading to a weaker assimilation effect compared with low vari-
ance. To examine for effects of the variance of the auditory
intervals on visual Ternus apparent motion, we directly manipu-
lated the relative standard deviation of the auditory intervals while
fixing their AM. One key property of time perception is that it is
scalar (Church, Meck, & Gibbon, 1994; Gibbon, 1977), that is, the
estimation error increases linearly as the time interval increases,
approximately following Weber’s law. Given this, we used CVs,
that is, the ratio of the standard deviation to the mean, to manip-
ulate standardized variability across multiple auditory intervals.
Specifically, we compared a low CV (0.1) with a high CV (0.3)
condition, with an orthogonal variation of the (arithmetic) mean
auditory interval: 50 ms shorter, equal to, or 50 ms longer than the
predetermined transition threshold.

The main effect of mean interval was significant, F(2, 30) �
11.8, p � .001, �g

2 � 0.078, with long intervals leading to more
reports of group motion (i.e., lower PSEs: mean PSE of 132 � 4.6
ms), short intervals to fewer reports of group motion (i.e., higher
PSEs: mean PSE of 147 � 6.7 ms), and equal intervals to an
intermediate proportion of group-motion reports (mean PSE of
138 � 5.3 ms). Post hoc Bonferroni comparisons revealed this
pattern to be similar to that observed in Experiments 1 and 2:
significant differences between the short and equal intervals (p �
.01) and the short and long intervals (p � .001), but not between
the equal and long intervals (p � .49). Interestingly, the main
effect of CV was significant (though the effect size is small), F(1,
15) � 5.29, p � .05, �g

2 � 0.044, while the interaction between
mean interval and CV was not, F(2, 30) � 0.31, p � .73, �g

2 �
0.0008 (Figure 3). Further examination for a (potentially con-
founding) recency effect, adopting the same comparison as for the
previous experiments, yielded no evidence that the main effects we
obtained are attributable to the length of the auditory interval
immediately preceding the visual interval, F(1, 15) � 0.33, p �
.55.

130

140

150

−70 0 70
Relative mean auditory intervals (ms)

P
SE

s
(m

s)

CV:0.1

CV:0.3

Figure 3. Points of subjective equality (PSEs) between element- and group-motion reports for auditory beep
trains with a low and a high coefficient of (auditory-interval) variance (CV, 0.1 or 0.3), as a function of the
(arithmetic) mean auditory interval (50 ms shorter, equal to, or 50 ms longer than the pretest transition threshold).
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These results are interesting in two respects. First, according to
mandatory, full Bayesian integration (see the Bayesian Modeling
section below for details), auditory-interval variability should af-
fect the weights of the crossmodal temporal integration (Buus,
1999; Shi et al., 2013), with greater variance lessening the influ-
ence of the average auditory interval. Accordingly, the slopes of
the fitted lines in Figure 2 would be expected to be flatter under the
high compared with the low CV condition, yielding an interaction
between mean interval and CV. The fact that this interaction was
nonsignificant suggests that the ensemble mean of the auditory
intervals is not fully integrated with the visual interval (we will
return to this point in the Bayesian Modeling section). Second, the
downward shift of the PSEs in the low, compared with the high,
CV condition indicates that the perceived auditory mean interval
(that influences the audio-visual integration) is actually not the
AM that we manipulated. An alternative account of this shift may
derive from the fact that the auditory sequences with higher CV
have a lower GM than the sequences with low variance, that is: the
perceived ensemble mean is likely geometrically encoded. Exper-
iment 4 was designed to address this (potential) confound by
directly comparing the effects of ensemble coding based on the
GM versus the AM.

Experiment 4: Perceptual Averaging of Auditory
Intervals Assimilates the Visual Interval Toward the
GM Rather Than the AM

In Experiment 4, we compared three types of auditory sequence
in our audiovisual Ternus apparent motion paradigm: a baseline
sequence, an AriM sequence, and a GeoM sequence. The PSEs
were 136 (�5.46), 148 (�6.17), and 136 (�6.2) ms for the AriM,

the GeoM, and the baseline conditions, respectively, F(2, 22) �
8.81, p � .05, �g

2 � 0.08 (Figure 4). Bonferroni-corrected com-
parisons revealed the transition threshold to be significantly larger
for the GeoM compared with the baseline condition, p � .01,
whereas there was no difference between the AriM and the base-
line condition, p � 1. This pattern indicates that ensemble coding
of the auditory interval assimilates the visual interval toward the
GM rather than the AM.

Experiment 5: Auditory Sequences With the Last
Interval Fixed

In Experiments 1–3, we split the data according to the last
interval (i.e., the interval preceding the visual Ternus display) of
the auditory sequence into two categories (short vs. long), which
failed to reveal any influence of the last interval. In Experiment 5,
we formally manipulated the last interval by fixing it at the
respective transition threshold for the short and long auditory
sequences (i.e., sequences with the smaller and, respectively,
larger GMs). Figure 5 depicts the responses of a typical participant
from Experiment 5. The PSEs were 153.1 (�7.3) and, respec-
tively, 137.9 (�9.1) for the short and long conditions, respectively,
t(11) � 3.640, p � .01. That is, reports of element motion were
more dominant in the short than in the long condition, replicating
the findings of the previous experiments. In other words, it was the
mean auditory interval, rather than the last interval (prior to the
Ternus frames), that assimilated visual Ternus apparent motion.
Given this, the audiovisual interactions we found here are unlikely
to be attributable to a recency effect.
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Figure 4. Auditory geometric mean assimilates visual Ternus apparent motion. (A) For a typical participant,
mean proportions of group-motion responses as a function of the probe visual interstimulus interval (ISIv), and
fitted psychometric curves, for the three auditory-sequence conditions: sequence of intervals with larger
arithmetic mean (AriM), sequence of intervals with smaller geometric mean (GeoM), and baseline sequence with
equal arithmetic and geometric means (140 ms). (B) Mean points of subjective equality (PSEs; with error bars
representing standard errors of the means) for the three auditory-sequence conditions. Compared wih the baseline
sequence, the GeoM sequence (with the smaller geometric mean) produced a significant shift of the visual
transition threshold, whereas the AriM sequence (with the larger arithmetic mean) did not. � p � .05.
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Bayesian Modeling

To account for the above findings, we implemented, and com-
pared, two variants of Bayesian integration models: mandatory full
Bayesian integration and partial Bayesian integration. If the
ensemble-coded auditory-interval mean (A) and the audiovisual
Ternus display interval (M) are fully integrated according to the
maximum likelihood estimation (MLE) principle (Ernst & Banks,
2002), and both are normally distributed (e.g., fluctuating due to
internal Gaussian noise)—that is: A � N�Ia, �a�, M � N�Im, �m� —the
expected optimally integrated audio-visual interval, which yields min-
imum variability, can be predicted as follows:

Îfull � wIa � (1 � w)Im, (1)

where w � �1⁄�a
2� ⁄�1⁄�a

2 � 1⁄�m
2 � is the weight of the averaged

auditory interval, which is proportional to its reliability. Note that
full optimal integration is typically observed when the two “cues”
are close to each other, but it breaks down when their discrepancy
becomes too large (Körding et al., 2007; Parise, Spence, & Ernst,
2012; Roach et al., 2006). In our study, the Ternus interval and the
mean auditory interval could differ substantially on some trials
(e.g., visual interval of 50 ms paired with mean auditory interval of
210 ms). Given this, a more appropriate model would need to take
a “discrepancy” prior and the causal structure (Körding et al.,
2007) of audio-visual temporal integration into consideration.
Thus, similar to Roach et al. (2006), here we assume that the
probability of full integration Pam depends on the discrepancy
between the mean auditory and Ternus intervals:

Pam � e�(Ia�Im)2⁄�am
2

, (2)

where �am
2 is the variance of the sensory measures of the discrep-

ancy between the ensemble mean of the auditory intervals and the
visual interval. Pam will vary from trial to trial, depending on the
discrepancy between the mean auditory interval and the visual
interval. Thus, a more general, partial integration model would
predict:

Îav � PamÎfull � (1 � Pam)Iv. (3)

Combined with Equation 1, Equation 3 can be simplified as
follows:

Îav � (1 � wPam)Iv � wPamIa. (4)

To compare the full-integration and partial-integration models,
we took into account the data from those of our experiments that
manipulated the auditory-interval regularity and variability (Experi-
ments 1–3; we excluded Experiments 4 and 5, as these did not include
a baseline task of Ternus apparent-motion perception; see the Mate-
rials and Method section). Given that the baseline task provided an
estimate of �m, there is one parameter—�a—for the full-integration
model and two parameters—�a and �am—for the partial-integration
model, which require parameter fitting. This was carried out using the
optimization algorithm L-BFGS in R (see our source code at https://
github.com/msenselab/temporal_averaging). We assessed the good-
ness of the resulting fits by means of coefficients of determination
(R2) and Bayesian information criteria (BIC). The BIC and R2 scores
are presented in Table 1. As can be seen, the BIC differences between
the partial- and full-integration models are large for all experiments,
clearly favoring the partial-integration model (Kass & Raftery, 1995).
The R2 values also confirm this finding.

To visualize how well the partial-integration model predicts
behavioral performance, we calculated the predicted mean re-
sponses based on the partial-integration model for individual vi-
sual ISIs across all experimental conditions. Figure 6 illustrates the
predictions, indicated by curves, together with the observed mean
responses, indicated by shape points. As can be seen, the predicted
mean responses are within one standard error of the observed mean
responses (see Figure 6).

The key difference between the full- and partial-integration
models is that the latter takes the probability of cross-modal
integration into account; accordingly, the weight of the auditory
ensemble intervals (i.e., wPam) depends on the difference between
the ensemble mean of the auditory intervals and the visual interval.
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Figure 5. Mean proportions of group-motion responses from a typical
participant as a function of the probe visual interstimulus interval (ISIv),
and fitted psychometric curves, for the two geometric mean conditions: the
“short” sequence (with the smaller geometric mean) and the “long” se-
quence (with the larger geometric mean).

Table 1
Model Comparison Using BIC and R2 for the Partial- and
Full-Integration Model

Experiments

Partial
integration Full integration

BIC R2 BIC R2 
BIC

Irregular 	1,859 .86 	1,392 .63 467
Regular 	1,932 .91 	1,772 .88 160
Variance 	2,894 .91 	2,878 .91 16

Note. The differential Bayesian information criterion (BIC) scores re-
vealed the partial-integration model to outperform the full-integration
model across all experiments (very strong evidence in all experiments:

BIC �10). The absolute values of bold type are the differences between
BIC scores by partial-integration model and BIC scores by full-integration
model.
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This can be seen in Figure 7, which illustrates the dynamic changes
of the auditory weights across the various audio-visual interval
discrepancy conditions. All three experiments exhibit a similar
pattern: weights are at their peak when the visual interval and the
auditory mean intervals are close to each other. For example, the
peaks for the relative intervals of 0 ms (i.e., the auditory mean
intervals were set to the individual visual thresholds) are around
140 ms, close to the mean visual transition threshold (134.6 ms for
regular and 135.3 ms for irregular sequences, and 139.0 ms for low
and 144.8 ms for high variance). For relative intervals of 70 ms,
the peaks are shifted rightward; and for relative intervals of 	70
ms, they are shifted leftward.

Based on the responses predicted by the partial-integration
model, we further calculated the predicted PSEs. Figure 8
shows a linear relation between the observed and predicted
PSEs for all experiments. Linear regression revealed a signifi-
cant linear correlation, with a slope of 0.978 and an adjusted R2.
The full-integration model, by contrast, produced flat psycho-
metric curves for 6% of the individual conditions in Experi-
ments 1 and 2 (due to the weight of the mean auditory interval
approaching 1), which yielded unreliable estimates of the cor-
responding PSEs. This led to lower predictive power compared

with the partial-integration model, as evidenced by the BIC and
R2 scores (see Table 1). Thus, taken together, the partial-
integration model can well explain the behavioral data that we
observed.

General Discussion

Using an audiovisual Ternus apparent motion paradigm, we
conducted five experiments on audiovisual temporal integration
with regular and irregular auditory sequences presented prior to
the (audio-) visual Ternus display. We found that perceptual
averaging of both regular (Experiment 1) and irregular auditory
sequences (Experiments 2 and 3) greatly influenced the timing
of the subsequent visual interval, as expressed in systematic
changes of the transition threshold in visual Ternus apparent
motion: longer mean auditory intervals elicited more reports of
group motion, whereas shorter mean intervals gave rise to
dominant element motion. In Experiment 4, we further found
that the GM of the auditory intervals can explain the audiovi-
sual interaction better than the AM. Further (post hoc) analyses
and a purpose-designed experiment (Experiment 5) effectively
ruled out an explanation of these findings in terms of a recency

low var high var

regular irregular
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Figure 6. Mean behavioral responses (proportion of group-motion reports, indicated by shape points) and
responses predicted by the partial-integration model (indicated by curves) as a function of the visual interstimu-
lus interval (ISIv) of the Ternus display, separately for auditory sequences with different (arithmetic) mean
intervals relative to the individual transition thresholds. The relative-interval labels (	70, 	50, 0, 50, and 70 ms)
denote the magnitude of the difference between the mean auditory interval and the transition threshold. Error
bars denote standard errors of means (�SEM).
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effect, that is, a dominant influence of the last interval prior to
the Ternus frames. Using a Bayesian integration approach, we
showed that the behavioral responses are best predicted by partial-
cue integration, rather than by full integration. Thus, our results
reveal the processing—in particular, the temporal averaging—of a
train of beeps that forms the background context of the visual task
to play a critical role in crossmodal temporal integration, even
when participants are asked to ignore the auditory stimuli.

Perceptual Averaging and Crossmodal Temporal Rate
Interaction

Extracting key statistical information from sets of objects or
events in our environment would provide us with a perceptual

strategy to cope with limitations in attentional and working mem-
ory capacity (Allik, Toom, Raidvee, Averin, & Kreegipuu, 2014;
Chetverikov, Campana, & Kristjánsson, 2016)—given that we can
have conscious access to only very few items from the total
amount of information received by our senses at any one time (e.g.,
Bundesen, Habekost, & Kyllingsbaek, 2005; Cohen, Dennett, &
Kanwisher, 2016; Cowan, 2001; Marois & Ivanoff, 2005). In this
situation, perceptual averaging would endow us with an efficient
and, in evolutionary terms, competitive solution to overcome
bandwidth limitations (McClelland & Bayne, 2016), thus consti-
tuting one of the underlying computational principles for selecting
appropriate actions to achieve our current behavioral goals.
Clearly, timing is fundamental for dynamic perception, and there-
fore unlikely to be an exception with regard to perceptual averag-
ing (Hardy & Buonomano, 2016; McDermott & Simoncelli, 2011).
For instance, when listening to a piece of music, we can immedi-
ately tell the average tempo, even though the individual “notes”
may not be well remembered. And when watching a field of
runners in a competition, we immediately know whether it is a
slow or a fast race overall.

Research on the audiovisual interaction in (cross-modal) event
timing has shown auditory rate to have a pronounced influence on
visual rate perception (Recanzone, 2003, 2009; Roach et al., 2006;
Shipley, 1964). The visual temporal rate is often assimilated to the
auditory rate, due to the higher temporal resolution of audition
compared with vision. Of note, however, the extant studies have
used only regular temporal sequences, thus leaving it an open
question whether the mechanism underlying the assimilation effect
is perceptual averaging, temporal entrainment, or a recency effect
from the latest auditory interval. On this background, the present
study examined how irregular auditory sequences influence visual
interval timing—measured in terms of the transition threshold of
Ternus apparent motion—and showed that it is the temporal av-
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Figure 7. Predicted weights (i.e., wPam, based on the partial-integration model) of the auditory ensemble
intervals as a function of the visual interstimulus interval (ISIv) of the Ternus display, separately for auditory
sequences with different (arithmetic) mean intervals relative to the individual transition thresholds. The
relative-interval labels (	70, 	50, 0, 50, and 70 ms) denote the magnitude of the difference between the mean
auditory interval and the transition threshold.

Figure 8. Predicted points of subjective equality (PSEs) versus observed
PSEs for all experiments. Each dot represents the PSE of one particular
observer in a given experimental condition. Shape points represent the four
auditory-sequence manipulations. Linear regression revealed a significant
high correlation (R2 � 0.983) and a slope of 1.008.
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eraging of the auditory sequence (regardless of its regularity) that
exerted a great influence on the visual interval.

Temporal Averaging and Geometric Encoding

The present results indicate that the GM well encapsulates the
summary statistics of the temporal structure hidden in a complex
multisensory stream (Hanson, Heron, & Whitaker, 2008; Heron,
Roach, Hanson, McGraw, & Whitaker, 2012). Previous work on
numerosity had already suggested that the mental scales underly-
ing the representation of visual numerosity and temporal magni-
tudes are best characterized as being nonlinear, as opposed to
linear, in nature (Dehaene, 2003; Dehaene et al., 2008; Nieder &
Miller, 2003, 2004; Rips, 2013). For example, adults from the
Mundurucu, an Amazonian indigenous tribe with a limited number
lexicon, map numerical quantities onto space in a logarithmic
fashion (Dehaene et al., 2008; but see Cicchini, Arrighi, Cecchetti,
Giusti, & Burr, 2012). A seminal study by Allan and Gibbon also
showed that temporal bisection coincided with the GM of the two
reference durations (Allan & Gibbon, 1991). Our findings reveal
that extraction of the GM also underlies temporal averaging—and
this might well be a principle shared by a broad range of mecha-
nisms coding magnitude in perception (Walsh, 2003).

Partial Integration in Cross-Modal Temporal
Processing

Research on multisensory integration has shown that the
“proximity” and “similarity” of the spatiotemporal structure of
multisensory signals—technically, their cross-correlation in
time (and space)—is critical for inferring an underlying com-
mon source to both signal streams (Parise & Ernst, 2016; Parise
et al., 2012). Accordingly, highly correlated audiovisual events
are likely perceived as arising from a single, multisensory
source. Roach and colleagues (2006) quantified this for audio-
visual rate perception by introducing a disparity prior, that is,
their model assumes that the strength of cross-modal temporal
integration is dependent on the disparity between the auditory
and visual temporal rates.

In the present study, by comparing two variants of Bayesian
integration models, full and partial integration, our findings also
quantitatively elucidate the way in which geometric averaging of
the preceding, task-irrelevant auditory intervals assimilates the
subsequent, perceived visual interval between the Ternus display
frames. The modeling results indicate that the ensemble mean of
the auditory intervals only partially integrates with the visual
interval, dependent on the time disparity between the two: when
the mean of the auditory intervals is close to the visual interval,
they are optimally integrated according to the MLE principle; in
contrast, if the ensemble mean deviates grossly from the visual
interval, partial integration, based on the cross-modal disparity,
provides a superior account of the behavioral data to mandatory,
full integration. However, in contrast to full integration, partial
integration requires participants to take both the mean statistics
and the cross-modal disparity into account. This is consistent with
a large body of literature on temporal contextual modulation,
within the broader framework of Bayesian optimization (Jazayeri
& Shadlen, 2010; Roach, McGraw, Whitaker, & Heron, 2017; Shi
et al., 2013), where prior information (e.g., history information or
a discrepancy prior) is incorporated in multisensory integration.

Perceptual Averaging and Temporal Entrainment

One important question to be considered is whether the assim-
ilation effect induced by perceptual averaging can be distin-
guished, at root, from attentional entrainment. In the typical audi-
tory entrainment paradigm, the rhythm itself is irrelevant with
respect to the visual target events that are to be detected (or
discriminated), though temporal expectations induced by the
rhythm influence attentional selection of the target (Lakatos, Kar-
mos, Mehta, Ulbert, & Schroeder, 2008). Rhythmically (i.e., with
temporal attention) anticipated target events are detected or dis-
criminated more rapidly than early or late events that are out of
phase with the peaks of the attentional modulation induced by the
entrainment (Ronconi & Melcher, 2017). Irregular rhythms, by
contrast, have been shown to disrupt temporal attention, as evi-
denced by reduced benefits for responding to the target events
(Miller, Carlson, & McAuley, 2013). Importantly, in the present
study, both regular and irregular auditory sequences did reduce
(rather than enhance) the sensitivity of discriminating Ternus
apparent (i.e., element vs. group) motion, as evidenced by the
increased JNDs. In contrast, the averaged temporal intervals,
whether these formed a regular or irregular series, were automat-
ically integrated with the subsequent visual interval, as expressed
in the systematic biasing of the reported visual motion percepts.
This “dissociation” implies that the assimilation effects demon-
strated here reflect a genuine, automatic perceptual averaging
mechanism that operates independently of attentional entrainment
processes.

Irrelevant Context in Multisensory Perceptual
Averaging

One might ask why the brain would at all take into account
entirely task-irrelevant contexts—such as, in the present study,
the (mean of the) intervals of an irrelevant auditory se-
quence—in multisensory integration. As revealed by our exper-
iments, the discrimination sensitivity for visual apparent motion
became actually worse and the motion percept became biased
by including the irrelevant auditory sequence. Note, however,
that, in the real world, there are normally strong associations
and correlations in the multisensory inputs—so that drawing on
this additional information often increases the reliability of
perceptual estimates. For example, the rhythmic sound pattern
produced by a train moving along the track would help us
improve our estimation of the train’s speed, given that the
tempo of the track sound is linearly correlated with the speed of
the train. Indeed, convergent evidence suggests that multisen-
sory integration can reduce the uncertainty of the final estimates
in many situations (Ernst & Banks, 2002; Ernst & Di Luca,
2011). However, integrating multiple sources of information
that deviates from the currently relevant information may en-
gender unwanted biases. Such contextual modulations have
been reported in various forms. For example, when performing
a series of time estimations, observers’ judgment of a given
interval is biased toward the intervals that they just experienced
(Jazayeri & Shadlen, 2010)—which is known as a central-
tendency effect (Petzschner, Glasauer, & Stephan, 2015; Shi &
Burr, 2016; Shi et al., 2013). A similar contextual modulation is
also at work in the so-called time-shrinking illusion, in which
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the percept of the last auditory interval is assimilated by the
preceding intervals (Nakajima, ten Hoopen, Hilkhuysen, &
Sasaki, 1992; Nakajima et al., 2004), as well as in audiovisual
interval judgments when auditory and visual intervals are pre-
sented sequentially (Burr et al., 2013). The present study dem-
onstrated that such an audiovisual integration still occurs even
when participants are explicitly told to ignore the (task-
irrelevant) auditory sequence, suggesting that processes of top-
down control cannot fully shield visual motion perception from
audiovisual temporal integration.

Conclusion

It has long been known that auditory flutter drives visual
flicker (Shipley, 1964)—a typical phenomenon of audiovisual
temporal interaction with regular auditory sequences. Here, in
five experiments, we demonstrated that irregular auditory se-
quences also capture temporal processing of subsequently pre-
sented visual (target) events, measured in terms of the biasing
of Ternus apparent motion. Importantly, it is the geometric
averaging of the auditory intervals that assimilates the visual
interval between the two visual Ternus display frames, thereby
influencing decisions on perceived visual motion. Further work
is required to examine whether the principles of geometric
averaging and partial cross-modal integration demonstrated
here (for an audiovisual dynamic perception scenario) general-
ize to other perceptual mechanisms underlying magnitude esti-
mation in multisensory integration.

Context of the Research

Perceptual averaging of sensory properties, such as the mean
number, size, and spatial layout of objects in a scene, has been
documented extensively in the visuospatial domain. It allows us
to capture our environment at a glance, in summary terms—
overcoming attentional and working memory capacity limita-
tions. This phenomenon prompted us to ask whether and, if so,
how processes of perceptual averaging may also be applied in
the temporal domain, specifically in (cross-modal) scenarios
involving multiple interacting sensory systems. Thus, we de-
signed a paradigm combining a task-irrelevant temporal se-
quence of auditory events with task-relevant Ternus apparent
motion—a phenomenon where we see two aligned dots either
move together (e.g., to the left or right) or only one dot
“jumping” across the other (apparently stationary) dot. What we
see (group vs. element motion) is critically influenced by the
temporal interval between the two Ternus display frames. What
we found is that the irrelevant auditory sequence preceding the
visual Ternus display alters the visual interval, thus biasing
observers to see either more group motion or more element
motion, depending on the GM of the preceding auditory inter-
vals. This interaction depends on the discrepancy between the
(mean) auditory and the visual interval: if the discrepancy
becomes too large, no interaction occurs. Conceptually, the
finding of temporal averaging over a sequence of auditory
intervals and its subsequent influence on the visual interval
makes a connection to the psychophysically well-established
central-tendency effect, in which the prior sampled distribu-
tion— here: of the auditory intervals—assimilates the esti-

mate— here: the visual interval. Although we have provided a
formal (partial Bayesian integration) description of this cross-
modal assimilation effect, further purpose-designed research is
required to provide a complete picture of underlying, interact-
ing neural mechanisms.
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