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Abstract
Abstract words constitute nearly half of the human lexicon and are critically associated with human abstract thoughts, yet
little is known about how they are represented in the brain. We tested the neural basis of 2 classical cognitive notions of
abstract meaning representation: by linguistic contexts and by semantic features. We collected fMRI BOLD responses for 360
abstract words and built theoretical representational models from state-of-the-art corpus-based natural language
processing models and behavioral ratings of semantic features. Representational similarity analyses revealed that both
linguistic contextual and semantic feature similarity affected the representation of abstract concepts, but in distinct neural
levels. The corpus-based similarity was coded in the high-level linguistic processing system, whereas semantic feature
information was reflected in distributed brain regions and in the principal component space derived from whole-brain
activation patterns. These findings highlight the multidimensional organization and the neural dissociation between
linguistic contextual and featural aspects of abstract concepts.
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Introduction
Words denoting abstract concepts that do not have specific
external referents, such as “TRUTH” and “BELIEF”, constitute
nearly half of the lexicon in most human languages and are the
building blocks of human abstract thought and reasoning. Our
knowledge of their representations in the brain is extremely

limited (Barsalou 2008). The dominant research on conceptual
representation is based on studies of objects and actions, with
the current consensus being that concepts are organized along
both modality-specific sensory/motor (Binder and Desai 2011;
Meteyard et al. 2012) and domain-specific dimensions (e.g., ani-
macy, Caramazza and Shelton 1998). The existing neural
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studies on abstract concepts have predominantly focused on
their general differences from concrete concepts, revealing that
abstract words tend to produce stronger activation than con-
crete words in the left anterior temporal cortex and left inferior
frontal gyrus (Wang et al. 2010), without examining the concep-
tual or neural organizational principles within the semantic
space of abstract concepts.

There are 2 major types of cognitive theories about abstract
concept representations. A classical view is that abstract con-
cepts are linguistically based. They are represented in a verbal
format (the Dual Coding theory, Paivio 1986) and/or through
contextual associations (the Context Availability hypothesis,
Schwanenflugel and Shoben 1983). Consistent with this view,
word properties in the linguistic contexts (word co-occurrence
patterns in large language corpus) have been found to predict
lexical decision latencies of abstract words in healthy indivi-
duals or interference effects in patients with brain damage
(Recchia and Jones 2012; Hoffman 2015). The significant prog-
ress made in natural language processing to represent rich
word meanings using various statistical learning algorithms of
word co-occurrence, based on either the global linguistic con-
text (e.g., the latent semantic analysis (LSA), Landauer and
Dumais 1997) or the local context (e.g., word2vec, Mikolov et al.
2013), has also strengthened the feasibility of this linguistic
corpus-based computational approach of abstract meaning
representation.

An alternative hypothesis is that abstract word meanings
are represented along multiple semantic features. This view
was motivated by grounded or “embodied” approaches to cog-
nition, which attempt to represent meaning through systems
that are intrinsic parts of the brain, including sensory, motor,
and affective systems (Barsalou 2008; Binder and Desai 2011;
Meteyard et al. 2012; Pulvermuller 2013), and was put into prac-
tice in studies about concrete concepts using approaches such
as feature generation (McRae et al. 2005). The plausibility of
this view for abstract concepts has been supported by a
recent series of behavioral studies demonstrating the crucial
role of emotion in the representation of abstract words
(Kousta et al. 2011; Vigliocco et al. 2014). Other studies have
considered a wider range of semantic features (Crutch et al.
2013; Binder et al. 2016), including social interaction (Barsalou
and Wiemer-Hastings 2005), showing that the high-dimensional
semantic space of abstract words generated by the ratings of
these semantic features is associated with the semantic inter-
ference effect both in patients with global aphasia (Crutch et al.
2013) and in healthy subjects (Primativo et al. 2016).

Do either of these 2 models characterize the representation
of abstract concepts in the brain, and how? The few existing
neuroimaging studies on abstract meaning have not answered
this question. The finding that greater activity in language-
related regions, including left anterior temporal cortex and left
inferior frontal gyrus, is elicited by abstract words than by con-
crete words has been interpreted as supportive of the linguistic
representation account (Binder et al. 2009; Wang et al. 2010). It
has been further shown that abstract words produce stronger
activation in an emotion-processing brain region compared to
concrete words, a finding that has been interpreted to support
the feature-based representation account (Vigliocco et al. 2014).
These interpretations rely strongly on assumptions about the
functions of these implicated brain regions and are therefore
prone to the limitations of reverse inference. Even if these
assumptions hold, they do not reveal the type of computations
used to represent linguistic or feature properties of abstract
concepts.

In this study, we examined the specific effects of these 2
cognitive variables—language-corpus-based linguistic contexts
and semantic feature decompositions—on the neural represen-
tation of abstract concepts. By “specific” we meant the effects
of either measure beyond those that could be also explained by
the other, given that these 2 measures are likely to be corre-
lated to some extent, as words sharing semantic features may
be more likely to appear in similar linguistic contexts. We sam-
pled 360 abstract words that covered a wide range of frequency
and semantic content. Language-corpus-based (Landauer and
Dumais 1997; Mikolov et al. 2013) and semantic-feature-based
(Crutch et al. 2013; Primativo et al. 2016) word distance mea-
sures were obtained. Although indeed correlated, both mea-
sures made unique contributions to the subjectively rated
semantic distance between abstract words. Blood-oxygen-level-
dependent (BOLD) fMRI responses to each of these 360 abstract
words in a familiarity judgment task were collected using the
condition-rich event-related design (Kriegeskorte, Mur and
Bandettini 2008). Representational similarity analysis (RSA)
(Kriegeskorte and Kievit 2013) was conducted to evaluate the
specific correspondence between each cognitive measure and
neural response patterns with the other cognitive measure con-
trolled. Given the paucity of our knowledge of how the brain
represents abstract words, and previous investigations of
semantic representations at both small (Peelen and Caramazza
2012; Fairhall and Caramazza 2013; Clarke and Tyler 2014) and
large (Huth et al. 2012, 2016) neural scales, we performed RSA
at 3 neural levels: the regional level, using the voxel-wise
whole-brain searchlight approach; the system level, using
established language and semantic masks mainly distributed
in the left temporal, frontal, and parietal regions; and the
whole-brain level, using principal component analysis (PCA)
over the whole-brain response patterns.

To illustrate the different predictions, consider the abstract
words “to accumulate”, “experience”, and “to add”. In a given
region, if the neural representation is sensitive to word co-
occurrence in a language corpus, “to accumulate” and “expe-
rience” would be coded by more similar neural patterns,
resulting in significant correlation between the neural space
and the language-corpus-based space. If the neural representa-
tion is sensitive to semantic features, “to accumulate” and “to
add” would be coded by more similar neural patterns, resulting
in significant correlation between neural space and semantic
feature space.

Materials and Methods
Participants

Sixty-eight healthy college students (mean age = 22.5 years;
range: 18–29 years) were recruited for behavioral ratings of
semantic features and subjective semantic distance. Another 6
participants (3 females; mean age = 25 years; range: 23–29 years)
completed the fMRI experiments, with each participating in 4
scanning sessions. All participants were right-handed, healthy,
native speakers of Chinese with no history of neurological or
psychiatric disorders. They were compensated for their partici-
pation and gave informed consent to the experimental protocol
approved by the Human Subject Review Committee at Peking
University.

Stimuli

The stimuli were 360 abstract, 2-character, bisyllabic Chinese
words. Stimuli were first taken from previous studies on
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English abstract words (Crutch et al. 2013; Troche et al. 2014),
which contained 200 abstract nouns that were sampled from
the low-imageability tail (<450) of the MRC Psycholinguistic
Database. We then added all the direct hypernyms of the first
meaning for each English word, and translated all of the stimuli
into Chinese. After removing phrases and untranslatable
words, we kept 360 Chinese words as the final stimulus
set. These words covered a wide range of word frequency
(Sun et al. 1997) (range: 0–2385 per 1.8 million, mean log
word frequency = 1.45) and visual complexity (6–27 strokes
and 2–9 radicals per word). About 200 words were primarily
used as nouns, 120 as verbs and the remaining 40 as adjec-
tives and adverbs. A complete list of the stimuli is shown in
the Appendix.

Building Representational Dissimilarity Matrices of
Abstract Words

We obtained 3 types of representational dissimilarity matrices
(RDMs) of abstract words based on the language-corpus-based
word co-occurrence, ratings of multiple semantic features and
subjective ratings of semantic distance between word pairs. An
RDM is a symmetric n × n matrix, with each column/row refer-
ring to 1 experimental condition and hence n the total number
of experimental conditions (in this study, 360 abstract words).
Each cell in the off-diagonal elements contains a number indic-
ating the distance for each pair of words in a given measure.

Language-corpus-based RDM
This RDM reflects the distance between word vectors of co-
occurrence patterns over a large corpus of text. We adopted 2
distinct, widely used algorithms: the Google word2vec tool and
LSA. The word2vec algorithm in this study computes continu-
ous vector representations of words based on the skip-gram
architecture (Mikolov et al. 2013). With the Baidu Baike corpus
containing approximately 1 billion word tokens, a vocabulary
of the most frequent 249 222 words was first constructed via
the Stanford parser. The word2vec tool was then used to train
vector representations of words (https://code.google.com/p/
word2vec/) with the following parameters: window size = 5,
sub-sampling rate = 10−4, negative sample number = 5, learning
rate = 0.025, dimension number = 300. The LSA distance (http://
www.lsa.url.tw/modules/lsa/) is measured through second-
order co-occurrence. The Academia Sinica Balanced Corpus of
Modern Chinese of 11 245 330 word tokens across 19 247 docu-
ments were used, and co-occurrence vectors were factored
using singular value decomposition (employing 300 factors) to
reduce the high dimensionality of the corpus. Note that 5
abstract words we used were not included in the LSA corpus
and therefore were excluded from the LSA distance calculation.
For both algorithms, the semantic distance was measured as 1
minus the cosine angle between feature vectors of each word
pair. In the main analyses, we combined the distance metrics
of the 2 algorithms to yield a single language-corpus-based
RDM by computing the z scores across all of the word pairs for
each distance metric and then averaging the 2 z scores for each
word pair.

Semantic Feature RDM
Following Crutch and colleagues (Crutch et al. 2013; Troche
et al. 2014), in separate norming sessions, we collected ratings
on the relatedness of particular semantic features to the mean-
ing of each abstract word on a 7-point Likert scale. Specifically,

Crutch and colleagues gleaned from the literature a total of 12
semantic features that have been empirically/theoretically
thought to affect the representations of some, if not all,
abstract concepts: social interaction, morality, thought, emo-
tion, valence (referred to as polarity in the Crutch et al. studies),
time, space, quantity, sensation, action, ease of teaching, and
ease of modifying. We made 2 modifications to this feature list.
First, we added 1 semantic feature, arousal, which serves as
another basic dimension of emotion that is at least partially
dissociable from valence (Russell 1980; Kuperman et al. 2014).
Second, we replaced ease of modifying with context availabil-
ity, because our finding that the 2 indices showed only a weak
correlation (r = 0.276) indicated that the former was not a valid
representative of the latter, as Crutch and colleagues have pro-
posed. Rating instructions for the 12 semantic features
included in the Crutch et al. studies were taken from Troche
et al. (2014). Rating instructions for arousal were taken from
Bradley and Lang (1999), and for contextual availability from
Clark and Paivio (2004). For each feature, approximately 17 ±
1.6 participants (range: 16–21, female ratio approximately 50%)
were recruited. Data were collected via an online survey (http://
www.sojump.com/), in which participants logged in and com-
pleted ratings. The inter-rater reliability for each rating was
high (range of intra-class coefficients (ICC): 0.696–0.976). Based
on the ratings of the 13 features specified above, each abstract
word could be described as a 13-dimensional vector with each
dimension indicating the extent to which the meaning of the
given word is associated with each semantic feature. The
feature-based RDM was then constructed by calculating the
Euclidean distance between feature vectors of each word pair
(Crutch et al. 2013).

Subjectively Rated RDM
We asked a group of healthy college students to rate the subjec-
tive distance of 100 abstract concept pairs randomly selected
from the original 200 abstract words used in the studies of
Crutch and colleagues. Pairwise combination of the 100 words
resulted in 4950 word pairs, which were randomly divided into 8
rating sessions, each of which contained 615 or 620 word pairs.
Sixteen participants (8 females) were recruited for each session
and were asked to rate how close the 2 words were in meaning
using a 7-point Likert scale (7 for the closest). The inter-rater reli-
ability was high for each subset (ICC range: 0.773–0.877). The
rating-based RDM was computed as 7 minus the averaged rating
scores of 16 participants for each word pair, which resulted in a
symmetric 100 × 100 matrix. We also included a common set of
10 additional word pairs in each subset and found that the ICC
for the averaged ratings of these word pairs was 0.998, indicating
excellent inter-subset reliability.

Partial Correlation Analysis
Spearman correlations were computed among the 3 types of
RDMs. We also included a familiarity RDM as a nuisance vari-
able. Familiarity ratings for all the word stimuli were obtained
from 17 college students (9 females) using a 7-point Likert scale
(7 for the most familiar), and the absolute values of the differ-
ence in the group-averaged familiarity scores between word
pairs were used to construct the familiarity RDM. To explore
the unique effects of the 2 aspects of abstract concepts in
explaining the real semantic space, we then performed partial
Spearman correlations, for example, computing the correlation
between the subjectively rated semantic distances and 1 aspect
of semantic distance (e.g., language-corpus-based measure),
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with the other aspect controlled for (in this case, the semantic
feature-based distance). Ninety-eight words (producing 4753
pairwise distance scores) with complete data for behavioral rat-
ings and language-corpus-based word co-occurrence were used
in this analysis.

fMRI Data Collection

During the fMRI experiment, participants performed a familiar-
ity judgment task in which they were asked to decide whether
the word was familiar or unfamiliar to them by pressing 1 of
the 2 response buttons using their right index or middle fingers.
This task was adopted to avoid biases towards any specific
aspects of abstract word meanings. We adopted a condition-
rich rapid event-related design (Kriegeskorte, Mur and
Bandettini 2008) with each word stimulus as an experimental
condition, with words displayed for 500ms and followed by a
1500-ms fixation period. Words were presented in the SONG
font and subtended approximately 8.19° × 3.38° of visual angle.
A red dot always appeared in the center of the screen for sub-
jects to fixate on.

Each subject participated in 6 9-min runs per scanning ses-
sion. In addition to 10-s fixation at the beginning and the end,
each run consisted of 180 word trials presented exactly once
and 60 interspersed null trials, whose orders were pseudoran-
domized so that no 2 characters occurred on consecutive word
trials more than once and that both the first and the last pre-
sentation were word trials. Different trial orders were used per
subject. The 180 words in each run were randomly selected
from the stimulus set and were repeated in 2 sessions, that is,
12 runs. To obtain the fMRI data of 360 words, each subject par-
ticipated in 4 sessions (24 runs) on 4 separate days.

MRI Parameters

Whole-brain imaging was performed on a Siemens PRISMA 3
Tesla MR scanner at the Center for MRI Research, Peking
University. The functional data were acquired with a simulta-
neous multislice (SMS) sequence supplied by Siemens (slice
planes scanned along the rectal gyrus, 64 slices, phase encod-
ing direction from posterior to anterior, repetition time (TR) =
2000ms, echo time (TE) = 30ms, multi-band factor = 2, flip
angle (FA) = 90°, field of view (FOV) = 224mm × 224mm, slice
thickness = 2mm, gap = 0.2mm, voxel size = 2 × 2 × 2mm).
Each run consisted of 250 volumes. In addition, a high-resolution
anatomical scan was acquired using the magnetization-prepared
rapid acquisition gradient echo (MPRAGE) sequence for anatomi-
cal reference (192 sagittal slices, TR = 2530ms, TE = 2.98ms, FA =
7°, FOV = 224 × 256, voxel size = 0.5 × 0.5 × 1mm, interpolated).

fMRI Data Preprocessing

Functional brain volumes were preprocessed and analyzed
using statistical parametric mapping software (SPM12;
Wellcome Department of Cognitive Neurology, London, UK).
One run of one subject was excluded from analysis due to tech-
nical errors during data acquisition. After the first 4 volumes of
each run were discarded, the functional data were corrected for
slice timing and head motion. No participant showed excessive
head movement (<1.1mm or 1.2°) in any of the scanning ses-
sions. Alignment of volumes from 4 scan sessions was then
performed by coregistering volumes of the last 3 scan sessions,
via their own mean functional images, to the mean functional
image of the first session. The preprocessing time courses in

the subjects’ native space, without any spatial normalization or
smoothing, were used for the following activation pattern esti-
mation. For the purposes of image transformation between the
MNI and native space, we coregistered the mean functional
image of the first session to the structural image and obtained
the original and inverse normalization parameters from the
SPM12 segmentation tool.

Obtaining Whole-brain Activation Patterns of Each
Abstract Word

For each word stimulus, a general linear model (GLM) was esti-
mated for each voxel, which included for each run 1 regressor
containing the onsets of a given word and another regressor
containing the onsets of all other word trials, both convolved
with the canonical hemodynamic response function. This
approach has been shown to be more representative of the true
activation magnitudes unique to each trial type than other
model estimation methods for rapid event-related designs
(Mumford et al. 2012). Also included in the GLM were 6 head
motion parameters and a global mean predictor of each run.
The high-pass filter was set at 128 s. After model estimation,
the whole-brain beta-weight image for each word was pro-
duced by contrasting the given word versus the baseline.

Regional-level RSA: Voxel-wise Whole-brain
Searchlight

To determine the semantic content in the activation patterns
across voxels, we performed a spheric searchlight analysis
(Kriegeskorte et al. 2006) with the following procedures. First,
the activation maps for each word in each subject’s native
space were normalized to the MNI space using the normaliza-
tion parameters from the SPM12 segmentation tool. The resam-
pling voxel size was 2 × 2 × 2mm. Second, gray matter voxels
were defined as those with a probability higher than 0.4 in the
SPM gray matter mask (a total of 157 904 voxels). For each gray
matter voxel in each subject, we extracted the activation values
of all of the 360 abstract words from a spheric region of interest
(ROI; radius 6mm, corresponding to 123 voxels) and computed
the neural RDM as 1-Pearson correlations of all word pairs over
all voxels within the spheric ROI. Note that this computation
was restricted to ROIs containing at least 30 voxels. Third, the
neural RDMs at a given voxel were z-transformed and averaged
across all 6 subjects and the resulting group-level neural RDM
was compared with semantic RDMs using Spearman’s rank cor-
relations, producing a correlation coefficient for this voxel. By
moving the searchlight center throughout the cortex, we finally
obtained whole-brain r-maps that contained 151 836 correlation
coefficients. The significance thresholds of these maps were
determined using FDR q = 0.01 on the corresponding p-maps (1-
tailed, indicating that correlation is significantly greater than
zero), combined with a minimum cluster size of 800mm3 (100
voxels). Negative correlations were not considered due to lack
of a priori expectation for their interpretation (Chikazoe et al.
2014). To remove the potential influence of familiarity and
visual complexity, we conducted partial correlation analyses by
taking familiarity and pixelwise RDMs as nuisance variables.
The pixelwise RDM was generated by computing the 1-
pixelwise correlation between pairs of the black-and-white sil-
houettes of word forms (Peelen and Caramazza 2012). With the
pixelwise RDM, we also conducted a searchlight analysis to val-
idate our data preprocessing and analysis methods.
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System-level RSA

Two system-level masks were defined to investigate the poten-
tial contribution of high-level linguistic and semantic areas to
the linguistic contextual and feature aspects of abstract con-
cepts. The high-level linguistic mask was obtained from a
group-level language localizer via the contrast between sen-
tences and nonword lists in 220 participants (Fedorenko et al.
2010) (https://evlab.mit.edu/funcloc/download-parcels), includ-
ing regions in the left hemisphere covering lateral temporal
regions, temporoparietal junction, inferior frontal gyrus, and
precentral gyrus. The second mask, implicated in semantic pro-
cessing, was identified in a meta-analysis across 120 functional
neuroimaging studies (Binder et al. 2009). Specifically, the mask
was obtained by transforming the thresholded activation likeli-
hood estimate map using all semantic contrasts (Fig. 3 in
Binder et al. 2009) from the Talairach space into the MNI space
using the “tal2icbm” transformation (Lancaster et al. 2007). This
semantic processing mask has been found to intrinsically com-
prise 3 stable modules by graph-theoretical analyses of the
resting-state functional connectivity patterns (Xu et al. 2016).
The masks of these modules consisted of sets of voxels
assigned with the module membership at sparsity = 0.4 (Fig. 4,
Validation Analysis 3 in Xu et al., 2016).

With these masks of interest, system-level RSA was per-
formed using the following procedures (Kriegeskorte, Mur, Ruff,
et al. 2008): 1) reverse-normalizing each mask defined in the
MNI space to each subject’s native space; 2) extracting activa-
tion patterns in a given mask to each of 360 abstract words and
subtracting the word-general activation pattern (calculated by
averaging all but the target 1 word patterns) from each word
pattern; 3) computing neural RDMs as the 1-Pearson correlation
between all word pairs in each subject and averaging the
z-transformed neural RDMs across all 6 subjects to obtain a
group-level neural RDM; and 4) conducting Spearman correla-
tion analyses between neural RDMs and language-corpus-based
and feature-based RDMs, respectively.

Whole-brain-level RSA—PCA of the Whole-brain
Patterns

To examine the types of semantic information about abstract
concepts embedded at the whole-brain level, we used PCA to
uncover the underlying neural dimensions from the whole-
brain activation patterns (Huth et al. 2012, 2016) and then
adopted the RSA approach to assess the correlation between
neural space built from the first few neural principal compo-
nents (PCs) and the abstract conceptual space estimated using
various distance measures.

Voxel Selection
Because not every voxel in the brain is expected to be involved
in our fMRI task, we included voxels yielding stable response to
a given word for PCA. Within the gray matter mask in each sub-
ject’s native space, we computed for each voxel the “stability
score” (Mitchell et al. 2008), which measures the consistency of
each voxel’s responses to all the word stimuli across a total of
12 repetitions. We first extracted the beta image for each repeti-
tion of each word from the GLM we built previously and then
assigned each voxel a 12 × 360 matrix, where the entry at row i,
column j, was the value of this voxel during the ith repetition
of the jth word. The stability score for this voxel was then com-
puted as the average pairwise correlation over all pairs of rows
in this matrix. We selected voxels whose stability score was

higher than 0.01 in the main results. This yielded 7592 voxels
in Subject 1, 8777 voxels in Subject 2, 8769 voxels in Subject 3,
10 953 voxels in Subject 4, 5993 voxels in Subject 5, and 7881
voxels in Subject 6. We found that varying the stability thresh-
old changed the number of voxels analyzed, but did not
strongly affect the neural PC interpretation.

Principal Component Analysis
To investigate the underlying neural dimensions of abstract
concepts that are shared across individuals, following Huth
et al. (2012), we pooled voxels from all 6 subjects (49 965 voxels)
and applied PCA to the combined data, resulting in 360 PCs.
The number of neural PCs was determined by the elbow of a
scree plot illustrating the variance explained by each PC. As
shown in Figure 4d, the elbow point was found at the third
component; therefore, the first 2 PCs were taken as the poten-
tial organizing dimensions of abstract concepts. For the pur-
pose of illustration, the projection of PC scores in the native
space was normalized to the MNI space and spatially smoothed
with a Gaussian kernel at 4mm full width at half maximum
(FWHM).

RSA and Correlation Analysis
We used RSA to evaluate whether and how linguistic contexts
and semantic features of abstract concepts are represented in
the first few neural PCs. As the neural PC1 is expected to con-
tain visual information of word stimuli (see results), we con-
structed a neural-PC-derived RDM by first regressing out visual
complexity (numbers of strokes and radicals) from the PC1
loadings, standardizing both the residue PC1 loadings and the
original PC2 loadings, and finally computing the Euclidean dis-
tance between word pairs in these 2 PCs. The Spearman’s rank
partial correlation was then computed between the neural RDM
and semantic RDMs with familiarity as a nuisance variable.
Additional validation analyses were carried out using the neu-
ral RDM derived from raw PC loadings, in which familiarity and
pixelwise RDMs were simultaneously controlled for as covari-
ates in RSA. Finally, to understand the information conveyed in
each neural PC, we conducted partial Pearson correlations
between neural PC loadings and the ratings of the 13 semantic
features collected above with familiarity ratings as a nuisance
variable.

Results
The analysis scheme is presented in Figure 1. We sampled the
language-corpus-based, behavioral rating, and BOLD fMRI data
of 360 abstract words. We first established that both language-
corpus-based and semantic-feature-based word distance mea-
sures independently explain significant portions of variance in
the subjectively rated semantic distance. RSA was then con-
ducted between the 2 aspects of abstract concepts and neural
response patterns on 3 different scales of brain organization.

Language-corpus-based and Behavioral Rating Results

Representational dissimilarity matrices (RDMs) of 360 abstract
words were constructed based on the pairwise (64 620 pairs in
total) distance derived from word co-occurrence in large lan-
guage corpora and semantic feature ratings, respectively.
Therefore, we obtained, for each measure, a symmetric matrix
with each column/row referring to an abstract word and each
cell in the off-diagonal elements containing a distance value
for a word pair in that measure. Multidimensional scaling
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(MDS) was used to project 2 of these RDMs into a 2-dimensional
space for visualization of distance among abstract words
(Fig. 2). Subjective ratings of semantic distance between word
pairs were collected for a subset of 100 words to reflect the
ground truth semantic space. The Spearman correlations
between these RDMs were then computed to examine the role
of linguistic contexts and semantic features in the ground truth
semantic space of abstract concepts (Fig. 3).

Language-corpus-based RDM
The linguistic-based semantic distance is obtained in the co-
occurrence statistics embedded in large natural language cor-
pora. We adopted 2 popular algorithms—word2vec and LSA,
which compute word co-occurrence patterns in local or global
linguistic context, respectively. Both algorithms generated a real-
valued vector for each word. Word dissimilarity was thus defined
as the cosine distance between word vectors. The RDMs based
on each algorithm were significantly correlated with each other
(r = 0.430, P < 10−10) and were averaged to yield a composite
language-corpus-based RDM for the main analyses. RSA results

with each of these 2 RDMs are shown in Supplementary
Figure S1 and Supplementary Table S1.

Semantic-feature-based RDM
Semantic distance based on multiple features was obtained fol-
lowing previous studies (Crutch et al. 2013), with minor modifi-
cations. For each of the 13 semantic features (i.e., social
interaction, morality, thought, emotion, valence, arousal, time,
space, quantity, sensation, action, ease of teaching and context
availability), we collected ratings of its association to the mean-
ing of each word on a 7-point Likert scale, obtaining a 13-
dimensional vector for each word. The Euclidean distances
between the feature vectors of all word pairs were calculated to
construct the semantic feature RDM. It may be argued that 2
semantic features—ease of teaching and context availability—
reflect more strongly verbal associations. We also constructed a
semantic feature RDM taking them out and based on the
remaining 11 features and found that these 2 semantic feature
RDMs were almost perfectly correlated (r = 0.987, P < 10−10).
Thus the semantic feature RDM based on 13-dimensional vec-
tors were used in the main analyses. RSA results using the 11

Figure 1. The flowchart of fMRI task and analysis procedures. (a) A condition-rich rapid event-related design was adopted for fMRI data collection, with each abstract

word as an experimental condition and a total of 360 conditions. (b) The whole-brain activation patterns of each abstract word were obtained. The neuroimaging data

are mapped on cortical surfaces using the BrainNet Viewer (Xia et al. 2013). (c) Neural representational dissimilarity matrices (RDM) were constructed by computing

the correlation distance of the activation patterns between all word pairs at the 3 neural scales: at the regional level, RDMs are computed from a spherical region cen-

tering each voxel of the gray matter regions; at the system level, RDMs are computed from all the voxels within the established language or semantic regions; at the

whole-brain level, an RDM is computed from the PCs of the whole-brain activation patterns. (d) Two representational models of abstract words were obtained: the

corpus-based distance was derived from 2 popular algorithms of natural language processing (word2vec and LSA) to reflect both local and global linguistic contextual

information; the feature-based distance was computed based on the ratings of 13 semantic features drawn from literature. Finally, RSAs were conducted to evaluate

the correspondence between cognitive and neural RDMs of abstract concepts.
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semantic features, shown in Supplementary Figure S1 and
Supplementary Table S1, were highly similar to those with the
13-dimensional semantic space.

There was a modest, yet highly significant, correlation
between these 2 types of semantic distance measures of
abstract concepts (Fig. 4a; r = 0.297, P < 10−10). Both were signifi-
cantly correlated with the subjective-rating-based semantic
distance (Fig. 3; language-corpus-based distance: r = 0.477;
semantic-feature-based distance: r = 0.339; Ps < 10−10). To
assess the unique effects of each representational model in
explaining variance in the subjective semantic distance, we
conducted a partial correlation controlling for the other cogni-
tive dimension and found that the correlations remained
highly significant for both measures (language-corpus-based
distance with semantic-feature-based distance controlled: par-
tial r = 0.414; semantic-feature-based distance with language-
corpus-based distance controlled: partial r = 0.226; Ps < 10−10).
These results indicate that linguistic contexts and semantic
features make unique contributions to the ground truth seman-
tic space of abstract concepts.

Neural RDMs and RSA Results on 3 Neural Scales

The BOLD fMRI responses for each of the 360 visually presented
abstract words were collected using the condition-rich event-
related design (Kriegeskorte, Mur and Bandettini 2008) in 6 col-
lege subjects. Neural RDMs were constructed for each subject,
using the word pairwise correlations of BOLD response pat-
terns, at 3 different scales: the regional level, using the voxel-
wise whole-brain searchlight approach; the system level, using
established language and semantic masks; and the whole-brain
level, using the PCA space derived from the whole-brain
response patterns. The group-level neural RDMs were gener-
ated by averaging neural RDMs of all subjects and then corre-
lated with the cognitive RDMs to assess their correspondence.
Differences in familiarity and low-level visual features were
treated as nuisance variables to control for in these analyses
and that the main result patterns were similar when these vari-
ables were not included as covariates (Supplementary Fig. S2a
and Supplementary Table S2). Note that we adopted the sample
size following studies using similar condition-rich design to

Figure 2. Visualization of semantic distances between abstract words based on word2vec and semantic features, respectively. Multidimensional scaling on the repre-

sentational dissimilarity matrices was used for data reduction of the dissimilarity matrix onto 2 dimensions. Words placed close together indicated shorter semantic

distance in a given metric. The words in circles are enlarged for illustration purposes.
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maximize condition (word) numbers, and conducted the RSA
based on the group mean neural RDM (Kriegeskorte, Mur, Ruff,
et al. 2008). In an additional leave-one-subject-out analysis we
validated whether the main results were driven by specific sub-
ject outliers. In this validation we obtained the group-level neu-
ral RDMs in all but one subjects. The results were largely stable
except for the regional-level RSA results of the corpus-based
RDM (see the following sections for details).

Region-level RSA results—voxel-wise whole-brain Searchlight
We performed whole-brain searchlight analyses (Kriegeskorte
et al. 2006), in which neural RDMs in a given sphere that was
centered on each voxel of the brain (radius 6mm; correspond-
ing to 123 voxels) were computed and their relationships with
various cognitive RDMs were examined. Given that the stimuli
were visual words, we first conducted a validation analysis for
low-level visual effects—a whole-brain searchlight using the
word stimuli pixel dissimilarity matrix. The results showed sig-
nificant effects in early visual areas (peak MNI coordinate: 22,
−102, 0; Supplementary Fig. S3), replicating previous findings
showing the localization of low-level visual features of stimuli
in the occipital cortex (Peelen and Caramazza 2012; Clarke and
Tyler 2014) and validating our preprocessing and analysis pro-
cedures with the current fMRI data.

The RSA searchlight mapping (Supplementary Fig. S2b) for
the language-corpus-based distance of abstract concepts
yielded one significant cluster in the left posterior inferior and
middle frontal gyri (IFG/MFG) (FDR corrected P < 0.01, cluster
size > 800mm3). Regions containing information about the
feature-based conceptual space were found to be widely dis-
tributed in both hemispheres, including the bilateral posterior
IFG/MFG, left triangular IFG, left posterior intraparietal sulcus
(IPS), left posterior middle temporal gyrus (MTG), left inferior
temporal gyrus (ITG), left amygdala, right postcentral and pre-
central gyri and adjacent parietal and frontal cortices, and a

cluster in the right insula. These 2 sets of results overlapped in
the left posterior IFG/MFG (68 voxels).

We further tested the unique effects of each cognitive
dimension by using partial correlation to control for the effects
of the other dimension while carrying out RSA with 1 dimen-
sion (Fig. 4b). The effects of the language-corpus-based distance
remained significant in the left posterior IFG/MFG, which
extended to the left precentral gyrus. Additional correlations
were found in the left inferior parietal lobule. The unique
effects of semantic features were similar to the raw correlation
effects except that the left posterior IFG/MFG did not approach
significance and that additional correlations were found in the
bilateral supramarginal gyrus, left precentral gyrus and right
amygdala. No overlap was observed.

Detailed information about the correlation peak coordinates
and cluster sizes is provided in Supplementary Table S3.
Changing the size of searchlight spheres (from 6mm radius to
8mm radius, corresponding to 2056mm3, 257 voxels) produced
similar results (Supplementary Fig. S2c). In the leave-one-
subject-out validation analyses (Supplementary Table S4), all
the feature-based clusters remained significant in all iterations.
The 2 corpus-based clusters were significant in all but 1 itera-
tion (when subject 6 was excluded), indicating that these 2
clusters may be driven by 1 particular subject rather than being
stable across subjects.

Note that the current whole-brain searchlight did not yield
clusters in the left anterior temporal lobe, a region that has
been found to be more strongly activated by abstract than con-
crete words (Binder et al. 2009; Wang et al. 2010). We thus per-
formed an RSA in this region, defined from the abstract versus
concrete contrast in a synonym judgment task (Hoffman et al.
2015). We first calculated the temporal signal-to-noise ratio
(TSNR) of this region by dividing the mean of motion-corrected,
unsmoothed time series across the whole run by its standard
deviation and averaging the TSNR across all the runs for each
subject. The TSNR of this region ranged from 31 to 36 in our

Figure 3. Correlations between representational models and subjective-rated semantic distance of abstract words. Four sample word pairs with semantic distances

ranking top 10 percentile in one measure and bottom 10 percentile in the other are shown; numbers indicate the percentile ranks of semantic distance for each mea-

sure. The subjectively rated distance matrix, considered as the ground truth distance, was based on explicit rating of pairwise semantic distance of 100 randomly

selected abstract words. Correspondence among these distance matrices were evaluated using Spearman correlation, with raw correlation referring to partial correla-

tion when familiarity as a nuisance variable was controlled for and unique correlation to partial correlation when both familiarity and the other aspect of abstract

concepts were controlled for. Asterisks indicate significance levels of the correlations relative to zero (2-tailed); **P < 10−10.
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subjects, indicating acceptable signal levels (Murphy et al.
2007). We still did not find any significant effects of either the
corpus- or feature-based aspects of the abstract semantic space
here (rs < −0.001, Ps > 0.576).

System-level RSA Results
Past fMRI studies have consistently revealed that language and
semantic processing activate distributed regions in the left-
lateralized temporal, frontal, and parietal regions. We selected
2 previously published maps as masks for the brain networks
underlying these 2 processing domains. Brain regions for high-
level linguistic processing were derived from a group-level loca-
lizer contrasting sentences to nonword lists in 220 participants
(Fedorenko et al. 2010). Brain regions for semantic processing
were taken from the results of a comprehensive meta-analysis
across 120 functional neuroimaging studies involving various
semantic contrasts (Binder et al. 2009). Different from voxel-
wise searchlight analyses, the system-level RSA tested the pos-
sibility that semantic knowledge may be represented across
multiple regions in the system as a whole (i.e., larger-scale pop-
ulation coding). We thus constructed system-level neural RDMs
based on the dissimilarity of activation patterns across all of
the voxels in these 2 masks.

The high-level linguistic mask (Fig. 4c) included regions in
the left hemisphere covering lateral temporal regions, temporo-
parietal junction, inferior frontal gyrus and precentral gyrus. Its

neural RDM significantly correlated with the language-corpus-
based RDM (r = 0.011, P = 0.002), not with the semantic feature
RDM (r = 0.006, P = 0.062). The unique correlations between this
neural RDM and each of the 2 cognitive RDMs showed similar
patterns. Significant correlation was found with the language-
corpus-based RDM (partial r = 0.010, P = 0.006), not with the
semantic feature RDM (partial r = 0.003, P = 0.250). That is, the
significant association between the neural RDM of the language
mask and the language-corpus-based RDM was not explained
by the potential confounding of semantic feature similarities.
This effect was robust in the leave-one-subject-out analysis
(Supplementary Table S4).

The semantic processing mask (Fig. 4c) included regions in
the middle temporal gyrus, the fusiform and parahippocampal
gyri, the inferior frontal gyrus, the dorsomedial prefrontal cor-
tex and the ventromedial prefrontal cortex, the inferior parietal
lobe and the posterior cingulate gyri. Its neural RDM showed
significant correlation with the language-corpus-based RDM
(r = 0.0073, P = 0.034), not with the semantic feature RDM (r =
0.003, P = 0.241). These results held when we considered the
unique effects of the 2 cognitive RDMs, that is, excluding the
effects of the other RDM (language-corpus-based: partial r =
0.0068, P = 0.044; semantic-feature-based: partial r = 0.001, P =
0.446). Leave-one-subject-out analyses revealed the similar ten-
dency of the language-corpus-based RDM to approach signifi-
cance (Supplementary Table S4). Interestingly, when we looked
at sub-networks within this large semantic mask that were

Figure 4. RSA results of abstract words. (a) The relationship between the corpus-based and feature-based representational dissimilarity matrices (RDMs) of abstract

concepts. (b–d) RSA at 3 neural scales. Only unique correlations are shown. See Supplementary Figure S2b for raw correlation results. (b) Regional-level RSA (i.e.,

voxel-wise searchlight with 6-mm-radius spheres) revealed regions whose activation patterns had significantly positive correlation with the corpus-based distance

and the feature-based distance, respectively. The significant levels of correlations greater than zero (1-tailed) were determined at FDR corrected P < 0.01, combined

with a minimum cluster size of 800mm3 (100 voxels). (c) For system-level RSA, neural RDMs were derived from dissimilarity of activation patterns across all voxels in

brain regions implicated in high-level linguistic processing (Crutch et al. 2013) and semantic processing (Binder et al. 2009). The table below shows the correlations

between neural RDMs and 2 representational models of abstract words (1-tailed). (d) For whole-brain level RSA, PCA was performed to extract the PCs from whole-

brain activation patterns of 360 abstract words. The scree plot showing the variance explained by each of the top 20 PCs at various stability thresholds identifies the

first 2 PCs as the important dimensions. Cortical maps of PC scores in one representative subject are shown. See Supplementary Figure S4a for cortical maps in the

remaining subjects. The neural RDM was computed as the Euclidean distance between word pairs based on the 2 PCs. Visual properties of words were removed from

PC1 loadings to exclude potential contamination of visual effects. The table below shows the correlations between the neural RDM and 2 representational models of

abstract words (1-tailed). Numbers in bold indicate P < 0.05.
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defined using graph-theoretical modularity analysis on the
intrinsic functional connectivity patterns (Xu et al. 2016), both
the raw and unique correlations with the language-corpus-
based RDM remained significant in the neural RDM of the left
perisylvian module (raw r = 0.0071, P = 0.037; partial r = 0.0067,
P = 0.046), whose anatomical locations correspond with the
high-level linguistic areas. These effects were not found in the
default mode module (Ps > 0.153) and only the raw, but not the
unique, correlation approached significance in the left fronto-
parietal module (raw r = 0.0073, P = 0.034; partial r = 0.0045, P =
0.130). This indicates that the linguistic contextual information
of abstract concepts in the semantic mask is primarily driven
by the high-level linguistic areas, converging with the results
using the high-level linguistic mask above.

Whole-brain level RSA Results—PCA of the whole-brain Patterns
Finally, we explored how the whole-brain activation patterns
may represent linguistic contextual and feature aspects of
abstract concepts. At this level, we considered those voxels whose
responses for a given word were stable across multiple repetitions
(Mitchell et al. 2008) (see Methods). The whole-brain neural RDMs
constructed directly on these voxels at various stability thresh-
olds did not correlate with either the language-corpus-based or
semantic-feature-based RDM (Ps > 0.138), which may be due to
the low signal-to-noise ratio in the whole-brain fMRI data.

Recent research has suggested that the PCs derived from
whole-brain activity patterns are sensitive to major conceptual
dimensions such as animacy or social interaction (Huth et al.
2012, 2016). We adopted this approach to obtain the neural
dimensions along which the whole-brain activity patterns of
abstract concepts are organized. Following previous studies
(Huth et al. 2012), we applied PCA to the activation patterns of
360 abstract words in the pooled stable voxels of all the sub-
jects to extract the neural PCs shared across individuals. As
shown in Figure 4d, for various stability thresholds, the charac-
teristic “elbow” points of the scree plots were always found at
the third PC. The first 2 PCs were thus considered the most
important dimensions. The following results were conducted
with the stability threshold set to 0.01, and in additional analy-
ses we found that varying the stability threshold did not
strongly affect the neural PC interpretation (see below).

The first 2 PCs explained 17.87% and 3.37% of the total vari-
ance, respectively. These results for abstract concepts were
comparable to those reported with concrete concepts (Huth
et al. 2012), which found that on average the first 4 PCs
explained 19% of the total variance. Cortical maps of PC scores
for 1 representative subject is shown in Figure 4d and for the
remaining subjects in Supplementary Figure S4a. These maps
reveal that the neural PC1 was positively associated with word-
evoked activations in occipital, parietal and frontal regions and
that the neural PC2 was evenly distributed in both hemi-
spheres. Previous investigation of neural PC1 (Huth et al. 2012)
and our observation of its association with the occipital regions
indicate that PC1 may contain information about stimulus
properties. Indeed, word loadings on PC1 were significantly
associated with visual complexity of the word stimuli (numbers
of strokes: r = 0.277, P < 10−7; number of radicals: r = 0.196, P <
0.001), whereas PC2 loadings were not (Ps > 0.725). To rule out
the potential contamination of visual effects, we regressed out
the numbers of strokes and radicals from the PC1 loadings and
used the residue PC loadings in the following analyses.

To evaluate the underlying principles for the whole-brain
activity pattern of abstract words, we constructed a neural RDM

using the Euclidean distance between word pairs in these 2 PCs
(Fig. 4d). This neural RDM significantly correlated with the
feature-based RDM (r = 0.035, P < 10−10) and not with the
language-corpus-based RDM (r = 0.006, P = 0.055). Significant
correlation with the feature-based RDM was also found when
the stability threshold was 0.005 (r = 0.036, P < 10−10) and 0.015
(r = 0.033, P < 10−10). That is, the relationship between word
pairs in this neural RDM is associated with how related 2
abstract concepts are in terms of their semantic features, not in
terms of how likely they would be to occur in similar linguistic
contexts. RSA using partial correlations yielded the same
results: the 2-dimensional neural RDM correlated with the
semantic feature RDM when the language-corpus-based RDM
was controlled for (stability 0.01: partial r = 0.034, P < 10−10; sta-
bility 0.005: partial r = 0.035, P < 10−10; stability 0.015: partial r =
0.032, P < 10−10), and not with the language-corpus-based RDM
when including the semantic feature RDM as a covariate (sta-
bility 0.01: partial r = −0.004, P = 0.842; stability 0.005: partial r =
−0.004, P = 0.862; stability 0.015: partial r = −0.005, P = 0.881).
This feature-related effect was stable in the leave-one-subject-
out analysis (Supplementary Table S4).

We performed additional validation analyses using the neu-
ral RDM derived from raw PC loadings and controlling for visual
complexity in the Spearman’s partial correlation, as we did in
the searchlight and system-level RSA. The results of cognitive
RDMs represented in the whole-brain activation patterns were
similar: this neural RDM significantly correlated with the
semantic-feature-based RDM (r = 0.020, P < 10−6), and not with
the language-corpus-based RDM (r = −0.002, P = 0.695). Similar
results were found with the unique effects (the semantic-
feature-based RDM, partial r = 0.022, P < 10−7; the language-
corpus-based RDM, partial r = −0.008, P = 0.982).

To understand the potential semantic features that the neu-
ral PCs may encode, we examined with which semantic feature
ratings the PC loadings were associated (Supplementary
Fig. S4b). Words with top 10 loadings on each PC and their
semantic feature ratings are shown in Supplementary Table S5.
Correlation analyses showed that among 13 semantic features,
the neural PC1 significantly correlated with valence (r = −0.119,
P = 0.025). Similar correlations were found when the stability
threshold was 0.005 (r = −0.123, P = 0.020) and 0.015 (r = −0.104,
P = 0.049). Not regressing out visual complexity from the PC1
loadings first (r = −0.088, P = 0.095) and not controlling for
familiarity (r = −0.174, P = 0.001) had minimal influence on this
correlation. That is, the most important single semantic feature
(dimension) that affects the whole-brain patterns of abstract
concepts is whether the concept is deemed positive or negative.
None of the correlations between PC2 and semantic features
approached significance.

Discussion
To understand how abstract words are represented in the
brain, we tested the neural correlates of 2 classical representa-
tional models: linguistic contexts and semantic feature decom-
position. The distance spaces of 360 abstract words were
constructed using computational language-corpus-based algo-
rithms and the behavioral ratings of 13 semantic features,
respectively. The neural response patterns of abstract words on
3 scales—regional, system, and whole-brain—were obtained
and compared to these 2 spaces using RSA. The main findings
were as follows: both types of organizational principles made
unique contributions to the cognitive semantic space of
abstract concepts, as defined by subjective ratings of semantic
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distance; both affected neural representations, but on different
scales and involving different brain regions. The language-
corpus-based co-occurrence patterns of abstract concepts were
significantly associated with the neural patterns of the high-
level linguistic system. In contrast, the high-dimensional
semantic-feature-based space was represented in a more dis-
tributed manner: it was significantly associated with the
whole-brain activation patterns and with the activation pat-
terns of regions widely distributed across both hemispheres
including the left triangular IFG, left ITG and posterior MTG, left
IPS, bilateral supramarginal gyri and amygdala. Taken together,
both linguistic contextual information and feature composition
of abstract concepts are implemented in the brain, with disso-
ciable neural correlates.

The 2 principles of meaning representation, especially for
abstract words, is a classical debate. Current dominant neuroan-
atomical models embraced the feature theories, attempting to
ground semantic representations in sensory, motor and affective
systems of the brain (Barsalou 2008; Martin 2016). The distribu-
tional approaches of semantics in the natural language proces-
sing field (Landauer and Dumais 1997; Mikolov et al. 2013),
however, represent words as vectors reflecting the co-occurrence
patterns with other words in large language corpora and has
recently made significant progress with the help of neural net-
work learning models in capturing semantic similarities. These 2
principles largely correspond to the nonverbal and verbal sys-
tems proposed by the Dual Coding Theory (Paivio 1986), which
have been incorporated in some unifying theories of semantic
cognition, such as the hub-and-spoke/controlled semantic cogni-
tion model (Lambon Ralph et al. 2017), and also debated exten-
sively in the representation of abstract concepts (Borghi et al.
2017). The current study is the first to explicitly investigate
whether and how these 2 principles are respected by the brain,
revealing their dissociations at various neural levels. Below we
discuss the brain basis of each principle in detail.

Representing Abstract Words in Verbal Co-occurrence
Patterns

To represent meaning in terms of linguistic context, we used
word-word distances obtained from natural language proces-
sing models, that is, language-corpus-based word co-occurrence
pattern analyses, as 1 potential means. RSA results showed that
this space, not the semantic feature space, significantly corre-
lated with the neural response pattern of the classical language
system as a whole (the left lateral temporal, inferior parietal,
and inferior frontal regions). Interestingly, no significant correla-
tion was observed in the homologous right-hemisphere regions
(P = 0.46), indicating that unlike natural speech that recruits
both hemispheres for comprehension (Huth et al. 2016), the
corpus-based space is mainly left lateralized. This system was
defined by the contrast between sentences and nonword lists
(Fedorenko et al. 2010) and has been found to show functional
specificity for high-level linguistic processing, but not for a vari-
ety of non-linguistic functions including arithmetic, cognitive
control, music and working memory (Fedorenko et al. 2011). The
manner in which these regions are engaged in language proces-
sing, and the aspects of language with which they are involved,
however, is not fully understood. Our results indicate 1 particu-
lar mechanism through which they may represent language—
the neural response pattern of the whole system encodes the
statistics-derived word distance patterns in natural language.
We further examined each of the 6 subregions within the sys-
tem and found significant correlations in the triangular and

orbital portions of the inferior frontal gyrus (Ps < 0.0034), surviv-
ing corrections for multiple comparisons. This is consistent
with the findings of a recent study (Carota et al. 2017), lending
support to the sensitivity of the left inferior frontal gyrus to
distributional semantics.

Given that the information contained by text-derived word
distance could be very rich, including semantic, syntactic and/or
lexical form regularities (Mikolov et al. 2013), the exact nature of
representation here warrants further investigation. At least
some of this representation likely includes semantic informa-
tion, as these regions fall within the semantic processing net-
work (Binder et al. 2009), distributed in a left-lateralized network
comprised of temporal, inferior frontal and inferior parietal
regions, which was obtained through meta-analyses of 120 neu-
roimaging studies of semantic memory using multiple types of
semantic contrasts differentiating between semantic and linguis-
tic surface form (phonology, orthography) processing. That is,
regions in this linguistic mask are more deeply involved in the
semantic aspect of language processing. The neural response
pattern of the semantic processing mask also significantly asso-
ciated with the language-corpus-based co-occurrence space.
Intrinsically, this large semantic network is decomposed into 3
sub-networks (Xu et al. 2016). The subnetwork that corresponds
to the language mask in the left perisylvian cortices was the only
subnetwork showing a significantly unique correlation with the
language-corpus-based distance of abstract concepts, providing
supporting evidence for the sensitivity of this subnetwork to the
co-occurrence of abstract concepts in language.

We considered 2 popular algorithms of extracting word co-
occurrence statistics in natural language: LSA and word2vec.
Both are not simple word co-occurrence counts but are some
kind of second-order co-occurrence patterns that represent
words as continuous vectors from large language corpora, with
the assumption that words that are close in meaning will appear
in similar contexts (Firth 1957). LSA is a count-based algorithm
that constructs a matrix containing word counts per document
(emphasizing global context) and obtains word vectors by retain-
ing a few hundred dimensions after matrix factorization. The
continuous skip-gram model of word2vec we used adopts the
neural network approach by training word vectors to predict sur-
rounding linguistic context given a single word (hence the local
context). The main analyses in our study used the mean of these
2 spaces to capture both global and local contextual information.
Analyses using these measures separately showed that the
word2vec distance tended to be more strongly correlated with
the subjectively rated and feature-based semantic space at the
behavioral level and with the neural distance at the system level
(Supplementary Table S1), suggesting that the main results using
the mean of these 2 spaces may be primarily driven by the
word2vec distance. This is consistent with the state-of-art per-
formance of word vectors provided by word2vec in extracting
semantic similarities (Mikolov et al. 2013). While the types of
information embedded in the vector space in neural network
models are unspecified, the current findings show that they are
indeed neurobiologically realistic, especially within the language
network mask. Future studies are also warranted to directly
compare the neural correlates of different types of linguistic
information extracted from various computational models.

Representing Abstract Words in a High-dimensional
Semantic Feature Space

The dominant view of representing concepts in brain-based
experiential features attempts to explain abstract meaning
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representation through a high-dimensional feature space
(Crutch et al. 2013; Binder et al. 2016; Fernandino, Binder, et al.
2016). We constructed a 13-dimensional semantic feature space
following previous studies establishing its cognitive relevance
(Crutch et al. 2013; Primativo et al. 2016). In the search for the
brain bases of this organizational principle at 3 scales, we
found that the neural response pattern across the semantic
processing mask as a whole (Binder et al. 2009) did not have
any significant effects. This could reflect the fact that nearly all
of the 120 studies used to define this mask involved concrete
concepts, thus this system may primarily represent concrete
sensory-motor aspects of meaning (Fernandino, Humphries,
et al. 2016). Region-based and whole-brain analyses, however,
generated positive results. The region-based analyses identified
widely distributed regions that are sensitive to the semantic
feature space. Some, including the left triangular IFG, IPS, ITG,
posterior MTG, and supramarginal gyrus, fall well within the
semantic processing mask (Binder et al. 2009), suggesting that
these semantic subregions may represent meaning through
feature composition, that is, by integrating and coordinating
multiple semantic features represented in segregated neural
systems. Intriguingly, the anatomical locations of these regions
are also in line with the left frontoparietal module of the
semantic system (Xu et al. 2016), suggesting the potential rela-
tionship between this feature space and semantic control.
Additionally, the bilateral amygdala, right insula, right postcen-
tral and precentral gyri and adjacent parietal and frontal corti-
ces were found to be sensitive to the feature space. Some of
these regions play various roles in emotion processing (Phillips
et al. 2003; Lindquist et al. 2012), consistent with the proposal
that emotion is a particularly important dimension for abstract
concept processing (Kousta et al. 2011).

The highly distributed nature of feature representations is
supported by the results on the whole-brain scale. The neural
space based on the first 2 neural PCs of the whole-brain activa-
tion patterns correlated with the semantic space derived from
semantic features, not with that from word co-occurrence.
Intriguingly, this result accords well with the previous observa-
tion that semantic deficits in a patient with global aphasia
were predicted by semantic similarity measured by feature dis-
tance and not LSA cosines (Crutch et al. 2013).

Our measure combined 13 semantic features of abstract
concepts using the Euclidean distance; therefore the highly dis-
tributed regions may represent different aspects of this seman-
tic feature space. In addition, it is important to note that many
of these features are abstract by themselves (e.g., morality) and
may not correspond to “primitive” experience-based brain sys-
tems (Crutch et al. 2013). They also are not entirely indepen-
dent (i.e., they do not represent different aspects of the feature
space orthogonally; consider emotion and valence). The neural
correlates for these features remain to be understood. Our
results did reveal that the first neural PC of the whole-brain
activity pattern is associated with valence information, and not
with other features such as emotion or social interaction. This
is consistent with behavioral evidence for a central role of
valence in the meaning of abstract words. For instance, it has
been shown that valence could account for the abstractness
effect observed in the lexical decision task after controlling for
confounding variables such as imageability and context avail-
ability ratings (Kousta et al. 2011). Our neural-data-driven
results show that valence properties indeed underlie the brain’s
response pattern to abstract words but that its effect goes
beyond the effects of emotion or social interaction. The special
status of valence may be because valence judgment—that is,

whether and to what extent a given word is related to positive
or negative feelings—lies at the core of human behaviors,
exerting strong influence over a wide range of psychological
phenomena, including attitudes, decision making, predicting
the future, personality, even perception of spoken words and
everyday objects (Barrett and Bliss-Moreau 2009). It is also pos-
sible that valence is particularly more important for abstract
concepts. A post hoc analysis showed that in our stimuli
valence is associated with more abstract words than other fea-
tures: 34% of our abstract words contain valence information,
using the criterion of rating scores greater than 5 (positive) or
smaller than 3 (negative), whereas other semantic features are
relevant for only 5% of words on average using a similar crite-
rion (rating scores greater than 5, range: 1.1–16%). Whether the
effects of valence on whole-brain neural activity are only the
byproduct of having greater variance in the stimulus set or
because it is an important distinctive feature for abstract con-
cepts awaits further study.

Relationships Between the 2 Representations

Our study focused on the unique aspects of these 2 types of
representation—linguistic contexts and semantic features—to
elucidate the neural mechanisms underlying conceptual repre-
sentation for abstract words. Similar principles may also be
applied to concrete words. Indeed, evidence from several
approaches highlights the complementary effects of these 2
aspects of meaning in concrete concepts. In development, the
presence of both experience and verbal cues works better than
when information of one type is present alone (Smith and Yu
2008; Andrews et al. 2009). Bayesian-based statistical incorpo-
ration of both types of information more closely resembles
human conceptual cognitive performances than the use of only
one type (Andrews et al. 2009). How these 2 types of informa-
tion are orchestrated together in the brain to support rich con-
ceptual representation remains to be explored.

Conclusion

Both linguistic contextual information and semantic features of
abstract concepts are implemented in the brain, with dissocia-
ble neural correlates on different scales. The classical language
regions, which overlap with one of the sub-networks of the
established semantic system, represent abstract word mean-
ings by verbal co-occurrence. The whole-brain patterns and
regions widely distributed across both hemispheres including
the left inferior frontal gyrus, posterior temporal cortex, bilat-
eral supramarginal gyri and amygdala, represent abstract word
meaning in a high-dimensional feature space. These results not
only elucidate how multiple principles, including experience-
based and language-based principles, serve to represent abstract
word meanings in the brain, but also provide insight into the
representation mechanisms of other types of meaning, includ-
ing concrete concepts.
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