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Human beings transfer thoughts across individuals, 
time, and space using language. We often assume that 
differences in thoughts are reflected by different choices 
of words and that speakers of the same language have 
common conceptual understandings about the basic 
word elements. Such commonality is the basis of effec-
tive learning and communication, and word-meaning 
misalignment is usually discussed only within the con-
text of cross-language speakers ( Jackson et al., 2019; 
Thompson et al., 2020). However, the individual varia-
tions in how people understand a word within a lan-
guage have intrigued classical philosophers (Locke, 
1690; Russell, 1948). Indeed, it has recently been empiri-
cally shown that there are intersubject variations in 
understanding politically or emotionally related words, 
which are associated with related domains of nonlin-
guistic processing such as political position (Li et al., 
2017) or emotional perception (Brooks & Freeman, 
2018). It is unknown whether this is specific to these 

“subjective” domains or is a general mechanism of word-
meaning representation. Here, using both behavioral 
and neural signatures, we empirically quantified the 
consistency and variations of word-meaning representa-
tions across speakers of the same language and from a 
relatively homogeneous culture and education group, 
and we investigated the underlying mechanisms leading 
to individual variation.

The nature of and variables affecting individual vari-
ation in word meaning are intrinsically related to the 
general principles of how word meanings are repre-
sented in the human brain. Meaningful variance in a 
system stems from the dimensions that make up the 
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Abstract
Humans primarily rely on language to communicate, on the basis of a shared understanding of the basic building blocks 
of communication: words. Do we mean the same things when we use the same words? Although cognitive neural 
research on semantics has revealed the common principles of word-meaning representation, the factors underlying 
the potential individual variations in word meanings are unknown. Here, we empirically characterized the intersubject 
consistency of 90 words across 20 adult subjects (10 female) using both behavioral measures (rating-based semantic-
relationship patterns) and neuroimaging measures (word-evoked brain activity patterns). Across both the behavioral 
and neuroimaging experiments, we showed that the magnitude of individual disagreements on word meanings could 
be modeled on the basis of how much language or sensory experience is associated with a word and that this variation 
increases with word abstractness. Uncovering the cognitive and neural origins of word-meaning disagreements across 
individuals has implications for potential mechanisms to modulate such disagreements.
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corresponding representation. For decades, research 
has focused on the common cognitive and neural basis 
of semantic (or conceptual) representations, converging 
on the consensus that these representations are com-
positional, entailing salient sensory, motor, and emo-
tion-related attributes, and distributed over multiple 
systems of the cortex, despite the controversies about 
the sufficiency and necessity of the specific constituents 
(Binder et al., 2016; Lambon Ralph et al., 2017; Martin, 
2016). Words referring to concrete objects comprise 
more specific sensorimotor attributes (e.g., the shape 
of a cup, the action associated with a cup), among other 
attributes, and tend to more strongly activate regions 
in the corresponding sensorimotor and association 
cortices (Fernandino et al., 2016; Martin, 2016; J. Wang 
et al., 2010). Abstract words (e.g., virtue, justice), by 
comparison, tend to be associated with socioemotional 
attributes and depend more on linguistic context, and 
they more strongly activate language-related regions 
such as anterior temporal and inferior frontal cortices 
(Binder et al., 2016; Hoffman et al., 2013; Kousta et al., 
2011; Schwanenflugel & Shoben, 1983; J. Wang et al., 
2010). However, recent evidence suggests that words 
referring to external referents may also entail language-
derived representations (Striem-Amit et  al., 2018;  
X. Wang et al., 2020).

These current semantic theories do not postulate 
explicit hypotheses about individual variability, and it 
is not obvious what predictions can be generated with-
out additional assumptions about the relationship 
between the underlying dimension compositions and 
the individual variation patterns. Is having richer proper-
ties of a particular attribute associated with greater or 
smaller variations? Consider the contrasts between 
words that have external referents (i.e., concrete words) 
and words that do not (i.e., abstract words). Although 
having external referents may boost consistency 
(through a common constraint), it is also possible that 
the knowledge about such referents is (at least partly) 
represented through sensorimotor experiences, which 
vary across individuals and actually introduce additional 
sources of variation. Furthermore, do various types of 
attributes themselves differ in their degree of intersub-
ject variation, thus having different effects on a word’s 
individual variations? With these theoretical and empiri-
cal possibilities, the approach here was to glean the 
potential organizational dimensions of word meanings 
from the current semantic theories and test the patterns 
in which these factors might account for individual con-
sistency, including which dimensions produce signifi-
cant effects and in what direction. Positive results would 
provide convergent evidence that the postulated dimen-
sion indeed effectively underlies meaning representa-
tion and that theories that do not incorporate those 
dimensions are to be challenged. Further, positive 

results would reveal the patterns of relationships of 
these dimensions and intersubject variations in word 
meaning.

Measuring people’s internal representation of word 
meaning is notoriously challenging. Explicit-definition 
approaches are highly controversial (Marggolis &  
Laurence, 1999). The feature-based view makes the 
feature-listing approach appealing; this approach has 
been applied to test representations of object word 
meaning (Binder et al., 2016; Cree & McRae, 2003; Tyler 
& Moss, 2001), but it is very difficult to apply it to non-
object words (Barsalou & Wiemer-Hastings, 2005). One 
widely adopted approach is to represent a word (at least 
partly) by its relationships with other words, which  
has been productive in natural-language processing 
(e.g., Landauer & Dumais, 1997; Mitchell et al., 2008; 
Thompson et al., 2020). This approach can be accom-
plished by subjective distance ratings in individual 
human subjects (Brooks & Freeman, 2018; Li et  al., 
2017). Another approach that does not rely on explicit 
ratings is to look at the neural representation itself. 
Multivoxel pattern analyses combined with the condition- 
rich design in functional MRI (fMRI) allow us to obtain 
the brain activity pattern for each single word in an 
experiment (Kriegeskorte, Mur, & Bandettini, 2008; 
Kriegeskorte, Mur, Ruff, et al., 2008). We thus used both 
a behavioral task and a neuroimaging task to measure 
word representation for convergence.

Experimental stimuli consisted of 90 words (for the 
complete list, see the Appendix) covering key semantic 

Statement of Relevance

Our common understanding of word meanings is 
the foundation of effective learning and commu-
nication. But even speakers of the same language 
could have different understandings of the same 
words—a kind of Tower of Babel problem on the 
individual level. Here, in behavioral and functional- 
neuroimaging experiments, we showed that peo-
ple’s agreements on word representations dif-
fer systematically across different types of words. 
There was greater agreement on the meaning of 
words that refer to concrete objects (e.g., cat, re-
frigerator) than words that do not have an external 
referent (e.g., identity, violence). We observed the 
pattern in both behavior and in neural respons-
es. These findings highlight the characteristics of 
word-meaning disagreements across individuals. 
They also may help explain human communication 
failures, especially in domains that rely largely on 
terms without external referents, such as in politics, 
sociology, or the law.
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domains in which cognitive and brain mechanisms have 
been extensively studied; these stimuli were drawn from 
domains that have external sensory referents (varying 
in sensory and motor-related attributes: animals, face/
body parts, and artifacts) and those that do not have 
specific external referents (nonobject abstract words 
with and without emotional associations, e.g., violence 
vs. result, respectively). We quantified their representa-
tions in all subjects (Chinese college students in Beijing) 
on the basis of both behavioral judgments (Experiment 
1) and brain activation patterns measured by functional 
neuroimaging (Experiment 2), and we computed the 
intersubject consistency (ISC) for each word from behav-
ioral data (ISC-behavior data) and brain data (ISC-brain 
data). We then asked independent groups of subjects to 
rate the extent to which each word was associated with 
each key representational dimension and examined how 
the ISC values across 90 words could be predicted by 
their rating means or variations (indexed by the standard 
deviation of ratings) of each dimension.

Method

Subjects

Twenty-one young, healthy college students (11 female; 
age: M = 21.1 years, range = 18–26 years) were recruited 
from several universities in Beijing for the study. All 
participated in the task fMRI experiment, and 20 of them 
participated in the semantic distance-judgment task. All 
subjects were right handed, were native Chinese speak-
ers with at least 1 year of university study in Beijing, 
and had normal or corrected-to-normal vision. All sub-
jects provided informed consent and received monetary 
compensation for their participation. The study was 
approved by the Human Subject Review Committee at 
Peking University in accordance with the Declaration of 
Helsinki. Note that the sample size was predetermined 
by following previous studies on ISC (~20 subjects; e.g., 
Chen et al., 2017; Xiao et al., 2020). We also repeated 
ISC analyses in sets of 10 subjects randomly drawn from 
the full sample 1,000 times and obtained ISC results 
similar to those of the full sample (see the Results and 
Table S6 in the Supplemental Material available online).

Stimuli

Stimuli in our study consisted of 90 written Chinese 
words, of which 40 were object words and 50 were 
words without explicit external referents (see the 
Appendix). Object words varied in their sensory and 
motor attributes; they consisted of 10 animals (e.g., cat), 
10 face or body parts (e.g., shoulder), and 20 artifacts 
such as tools and common household objects (e.g., 
microwave). Words without external referents varied in 

their emotional associations; 20 words did not have 
emotional connotations (i.e., “nonemotional nonobject” 
words, as determined by being rated as having low 
arousal [< 3] and being emotionally neutral [3.5–4.5] on 
7-point scales by independent groups of college stu-
dents; see below), and 30 were emotionally related 
words (e.g., violence). All words were rated as highly 
familiar (M = 6.5, SD = 0.4; 7-point scale) by an inde-
pendent group of 26 college students, and all were 
disyllabic, except for five object words (in Chinese, the 
characters for cat and bed are monosyllabic, and the 
characters for giraffe, microwave, and washing machine 
are trisyllabic).

We compared different types of words on common 
psycholinguistic variables, including the number of 
strokes (a measure of visual complexity for Chinese 
words), word frequency, and subjectively rated familiar-
ity. Compared with nonobject words, object words 
had similar numbers of strokes (Mobject = 17.2, SD = 5.8 
vs. Mnonobject = 16.1, SD = 4.0), independent-samples 
t(88) = 1.05, p = .30, Cohen’s d = 0.22; were less fre-
quent in a Mandarin Chinese corpus (H. L. Sun et al., 
1997; log word frequency: Mobject = 1.0, SD = 0.7 vs. 
Mnonobject = 1.6, SD = 0.7), t(88) = −3.83, p < .001, Cohen’s 
d = 0.86; and were rated as more subjectively familiar 
(Mobject = 6.8, SD = 0.2 vs. Mnonobject = 6.2, SD = 0.3), t(88) 
= 12.05, p < .001, Cohen’s d = 2.53. When further sepa-
rating nonobject words into emotional and nonemo-
tional words, we compared the three types of words 
on these variables using a one-way analysis of variance 
(ANOVA), followed by a Tukey’s post hoc test. The 
three types of words had similar numbers of strokes, 
F(2, 87) = 1.84, p = .16. In word frequency, emotional 
nonobject words (M = 1.2, SD = 0.5) had similar fre-
quency as object words (p = .42), and both object and 
emotional nonobject words were less frequent than 
nonemotional nonobject words (M = 2.2, SD = 0.5; ps 
< .001). In subjectively rated word familiarity, emotional 
nonobject words (M = 6.2, SD = 0.3) had similar famil-
iar i ty as nonemotional nonobject  words  
(M = 6.2, SD = 0.2; p = .77), and nonobject words were 
rated as less familiar than object words (ps < .001).

Experiment 1: word-level ISC based on 
behavioral assessment

Semantic distance-judgment task. The word-meaning 
representations were obtained using a multiarrangement 
paradigm (Kriegeskorte & Mur, 2012). In this paradigm, 
subjects dragged and dropped words in a circular array on 
a computer screen, arranging them spatially close together 
or far apart according to the words’ semantic distances 
(Fig. 1a). The task consisted of multiple trials. In the first 
trial, subjects had to arrange all 90 words, producing a  
90 × 90 matrix containing Euclidean distances among all 
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the words. In subsequent trials, subjects were shown 
adaptively selected word subsets that had been clustered 
together in previous trials, producing partial distance 
matrices. The task lasted for 1 hr, during which subjects 
completed various numbers of trials (M = 85, SD = 71, 
range = 24–284). The final distance measure for each sub-
ject was calculated as the weighted average of distance 
measures of their multiple arrangements. Multidimensional 
scaling was carried out to visualize individual semantic 
distance matrices (number of dimensions [ndim] = 2,  
type = interval) using the smacof package (de Leeuw & 
Mair, 2009) in the R programming environment (Version 
4.0.0; R Core Team, 2020).

Word-level ISC-behavior computation. To compute 
the word-level ISC in behavior for each subject, we repre-
sented each word as an 89-dimensional vector of its seman-
tic distance with the remaining words. Pearson’s correlations 
of the word vector among each pair of subjects were then 
computed, Fisher z transformed, and averaged across 190 
subject pairs (20 subjects in total) to obtain ISC-behavior 
data for each word. The standard error of the ISC for behav-
ior was assessed in two approaches: (a) bootstrapping the 
subject set with replacement 10,000 times, which evaluated 
ISC robustness across subjects, and (b) bootstrapping the 
word set with replacement 10,000 times, which evaluated 
ISC robustness across words included for judgment.

Validation of words’ ISC-behavior computation.  
One issue that needed to be considered was whether a 
particular word’s ISC-behavior pattern was affected by our 
choices of base words in its semantic-vector construction. 
In the main analyses using the 90-word set, for each word, 
the base words were the other 89 words (N – 1); the base 
words covered a wide range of words with varying types 
of relations with the word in consideration (both taxo-
nomic and nontaxonomic neighbors). In this way, for 
each word under consideration, its 89 base words varied 
slightly (in a leave-one-out fashion). This validation analy-
sis was then further conducted to check whether the ISC 
results obtained in this way were robust across different 
kinds of base-word list selections, especially when the 
common set of base words was used. We performed split-
half analyses so that for each of the 45 words in the first 
half, the 45 words in the second half became the base 
words for its semantic vector (i.e., no leave-one-out 
method needed). ISC values were then computed from 
these data. This procedure was repeated 10,000 times.

Experiment 2: word-level ISC based on 
brain activation patterns

Task fMRI procedure. A condition-rich fMRI design 
was adopted to obtain activity patterns for each word 
(Kriegeskorte, Mur, & Bandettini, 2008; Kriegeskorte, 

Mur, Ruff, et al., 2008). During the fMRI task (Fig. 2a), 
subjects were instructed to view each of 90 target words, 
think about their meanings, and perform an oddball one-
back semantic judgment task. In the latter, subjects were 
instructed to determine whether occasional words in red 
were semantically related to the previous word by press-
ing buttons with their right index finger or middle finger 
(catch trials). There were 10 runs (360 s per run). Each 
run consisted of ninety 2.5-s-long word trials (0.8-s word 
followed by 1.7-s fixation), fourteen 2.5-s-long catch tri-
als, and thirty 2.5-s-long null trials; the mean interval 
between two words was 3.23 s. Each target word 
appeared once within each run; the order of 90 target 
words was randomized in each run for each subject. 
Each run began with a 12-s fixation period and ended 
with a 13-s rest period during which subjects saw a ver-
bal cue that the current run was about to end.

Image acquisition. All functional and structural MRI 
data were collected using a Siemens Prisma 3T scanner 
with a 64-channel head-neck coil at the Center for MRI 
Research, Peking University. Functional data were 
acquired with a simultaneous multislice echoplanar-
imaging sequence supplied by Siemens (62 axial slices, 
repetition time [TR] = 2,000 ms, echo time [TE] = 30 ms, 
multiband factor = 2, flip angle [FA] = 90°, field of view 
[FOV] = 224 mm × 224 mm, matrix size = 112 × 112, slice 
thickness = 2 mm, gap = 0.2 mm, and voxel size = 2 mm ×  
2 mm × 2.2 mm). A high-resolution 3D T1-weighted ana-
tomical scan was acquired using the magnetization-pre-
pared rapid-acquisition gradient-echo sequence (192 
sagittal slices, TR = 2,530 ms, TE = 2.98 ms, inversion time =  
1,100 ms, FA = 7°, FOV = 224 mm × 256 mm, matrix size =  
224 × 256 interpolated to 448 × 512, slice thickness = 1 
mm, and voxel size = 0.5 mm × 0.5 mm × 1 mm).

Data preprocessing. Functional images were prepro-
cessed using Statistical Parametric Mapping (SPM) software 
(Version 12; Wellcome Trust Center for Neuroimaging, 
London, UK, http://www.fil.ion.ucl.ac.uk/spm12/). For 
each individual subject, the first four volumes of each 
functional run were discarded to reach signal equilibrium. 
The remaining images were corrected for slice timing and 
head motion and spatially normalized to Montreal Neuro-
logical Institute (MNI) space via unified segmentation 
(resampling into 2 mm × 2 mm × 2 mm voxel size). No 
subject had head motion larger than 2 mm/2°. These 
images were directly submitted to general linear models 
(GLMs) for multivariate pattern analyses and were further 
spatially smoothed using a 6-mm full-width half-maximum 
Gaussian kernel for univariate contrast analyses.

Computation of whole-brain activation patterns 
for each word. Whole-brain activation patterns for  
each word were obtained using a GLM with spatially 

http://www.fil.ion.ucl.ac.uk/spm12/
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normalized, unsmoothed functional images. For each 
subject, the GLM for each run contained 90 regressors 
corresponding to the onset of each target word and one 
regressor indicating catch trials, convolved with a canoni-
cal hemodynamic response function, and six head-
motion parameters. A high-pass-filter cutoff was set at 
128 s. The resulting t maps for each target word versus 
baseline were used to compute the ISC-brain data.

Word-level ISC-brain data computation. The proce-
dure for ISC-brain computation consisted of the follow-
ing steps: (a) Define word-associated voxels; (b) extract 
activation patterns of each word from these voxels in 
each subject; and (c) compute, for each word, the Pear-
son’s correlations of activation patterns for each pair of 
subjects, which were Fisher z transformed and averaged 
across subject pairs to obtain the ISC-brain data for this 
word. The key step here was the definition of word- 
associated regions, given that it is not necessarily obvious 
what voxels contain information about word (meaning) 
representations. We thus adopted multiple approaches 
that are described below to validate the robustness of the 
ISC-brain results. Functional activation maps were 
assessed at a voxel-wise threshold of p < .005, family-
wise error (FWE)-corrected cluster-extent p < .05, unless 
explicitly stated otherwise.

In Approach 1, we defined word-related regions as 
those sensitive to major meaning differences between 
object words and nonobject words. For each subject, 
we built a GLM with spatially smoothed functional 
images and included two regressors corresponding to 
the onset of each word type (i.e., object or nonobject) 
and one regressor for catch trials, together with six 
head-motion parameters, for each run. The object-
versus-nonobject contrast was computed, and the 
resulting β-weight images were submitted to an F test 
at the group level to identify the voxels whose activa-
tions were significantly different between object words 
and nonobject words.

In Approach 2, word-related regions were defined 
as gray-matter voxels showing the most stable responses 
across words in 10 repetitions (Mitchell et al., 2008). 
For each of the voxels with a probability higher than 
.4 in the SPM gray-matter mask, we computed a stability 
score to evaluate its response consistency regarding 90 
words across 10 repetitions. For each subject, a gray-
matter voxel was assigned a 90 × 10 matrix, where the 
entry at row i, column j, was the β weight of this voxel 
during the jth repetition (scanning run) of the ith word. 
The stability score for this voxel was then computed as 
the averaged pairwise correlations over all pairs of col-
umns (scanning runs) in the matrix. This produced a 
stability gray-matter map for each subject. These stabil-
ity maps were then submitted to a one-sample t test at 
the group level, and the voxels with the top t values 

(ranging from the top 100 to the top 5,000; for voxel 
distributions, see Fig. 3) were considered to show con-
sistently high stability in response to word stimuli 
across subjects.

In Approach 3, word-associated voxels were identi-
fied in a meta-analysis of studies associated with word 
processing using Neurosynth (Yarkoni et  al., 2011),  
an online platform for large-scale, automated meta-
analyses based on the fMRI database of 14,371 studies 
(https://www.neurosynth.org/). Each study was auto-
matically tagged with various terms (e.g., word, face), 
and its activation coordinates were also automatically 
extracted. Using the term word, Neurosynth divided the 
database into two sets: 944 studies were tagged with 
the term word, and the other studies were not. The 
platform then produced an association test map showing 
z scores from a two-way ANOVA to test for the associa-
tion between each voxel and the term word; a higher z 
score indicated that a voxel was more likely to be acti-
vated in studies tagged with the term word than in those 
without. The association test map was assessed at a 
false-discovery-rate threshold of 0.01, and clusters with 
voxel sizes smaller than 10 were further removed. This 
method of functional region-of-interest localization has 
recently been widely used given the power offered by 
the large number of studies (e.g., Hung et  al., 2020; 
Kragel & LaBar, 2016; Maimon-Mor & Makin, 2020).

In Approach 4, in case any regions sensitive to words’ 
emotional meanings were not included, we redefined 
the word-associated mask as those clusters sensitive to 
any differences among object versus emotional nonob-
ject versus nonemotional nonobject words. As in the 
object-versus-nonobject contrast, a GLM was built to 
include three regressors corresponding to the onset of 
each of the three word types for each run. The β maps 
for each word type versus baseline were submitted to 
a one-way ANOVA (within subjects) at the group level.

In Approach 5, instead of extracting activation pat-
terns from a group-defined word-associated mask, we 
localized word-associated voxels in individual subjects 
using a group-constrained subject-specific approach 
(Fedorenko et al., 2010). Adopting a leave-one-subject-
pair-out procedure, we first localized group-level word-
associated parcels in 19 subjects on the basis of the 
object-versus-nonobject contrast. Within these parcels, 
we identified, for each of the remaining two subjects, 
the set of N voxels showing the largest differences 
between object and nonobject words. (Results of ISC-
brain data were largely similar when the number of 
individual-defined voxels, N, increased from the top 50 
to 400 voxels and to all the voxels in the group-defined 
mask; we reported ISC-brain results at N = 300 voxels.) 
We then united the two sets of voxels in the two sub-
jects and calculated Pearson’s correlations of activation 
patterns for this subject pair for each word. For a given 

https://www.neurosynth.org/
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word, the correlations across all subject pairs were 
Fisher z transformed and averaged to obtain the ISC-
brain data.

Brain visualization. The brain maps and results were 
projected onto the MNI brain surface using BrainNet 
Viewer (Version 1.7; Xia et  al., 2013; https://www.nitrc 
.org/projects/bnv/) with the default “interpolated” map-
ping algorithm, unless stated explicitly otherwise.

Ratings of candidate organizing 
principles of semantic representations 
in the brain

To explain the cognitive origins of word-meaning varia-
tion across individuals, we collected ratings on the fol-
lowing dimensions relevant to semantic representations. 
Each word was rated on a scale concerning emotional 
valence, ranging from 1 (negative) to 4 (neutral) to 7 
(positive), and a scale for other ratings ranging from 1 
(the lowest extent) to 7 (the highest extent). The rating 
instructions were as follows.

For sensory experience, subjects rated “to what 
extent the concept denoted by the word evokes a sen-
sory experience (including vision, audition, taste, touch, 
and smell).” For navigation, they rated “to what extent 
the concept denoted by the word could offer spatial 
information to help you explore the environment.” For 
manipulation, the instruction was to rate “to what extent 
the concept denoted by the word could be grasped 
easily and used with one hand.” For stress-related 
actions, subjects rated “to what extent the concept 
denoted by the word would make you have a stress 
response, e.g., run away, attack, or freeze.” For emo-
tional valence, they rated “to what extent the concept 
denoted by the word evokes positive or negative feel-
ings; very positive feelings mean that you are happy, 
satisfied, contented, hopeful; very negative feelings 
mean that you are unhappy, annoyed, unsatisfied, 
despaired, or bored.” For arousal, they were asked to 
rate “to what extent the concept denoted by the word 
makes you feel aroused. Low arousal means that you 
feel completely relaxed, very calm, sluggish, dull, or 
sleepy; high arousal means that you are stimulated, 
excited, frenzied, jittery, or wide-awake.” For language 
descriptiveness, the instruction was to rate “to what 
extent the concept denoted by the word could be 
described and explained using language.”

We recruited independent groups of 26 to 30 college 
students from Beijing Normal University for each rating 
(N = 196) via an online survey (https://www.wjx.cn/). 
We computed a quality metric by correlating each sub-
ject’s ratings with the averaged ratings from all subjects 
(except the subject being assessed) across all rated 
words. Subjects whose ratings were not significantly 

correlated with others’ mean ratings (p > .05) were 
excluded from the subsequent analyses, leaving 24 to 
28 college students for each rating (N = 184).

Results

Cognitive representations of word 
meaning: individual consistency 
predicted by language or sensory 
experiences

We constructed cognitive word-meaning representations 
from behavioral judgments of the semantic distances 
among 90 words. We asked 20 subjects (college students 
from Beijing) to rate meaning distance among 90 words 
using a multiarrangement method (Kriegeskorte & Mur, 
2012; Fig. 1a), which produced a 90 × 90 representational-
dissimilarity matrix for each subject. We visualized these 
distance matrices using multidimensional scaling in a 2D 
plot; words that were spatially closer were more semanti-
cally related (Fig. 1b; see also Fig. S1a in the Supple-
mental Material). The mean Fisher-z-transformed 
Pearson’s correlation for the entire 90-word matrices 
between each subject and the group (in a leave-one-
subject-out fashion) was .58 (SD = .10), indicating 
medium-level consistency across subjects (see Figs. S1b 
and S1c in the Supplemental Material). Next, we com-
puted the word-level ISC-behavior data. For each word, 
we took the rated distances with all other words (i.e., 
an 89-dimensional vector) as the “representation” of this 
word for each subject. Then, we computed the Pearson’s 
r between each subject pair, Fisher z transformed and 
averaged across all subject pairs, which determined the 
ISC-behavior value of this word.

As evident from the bar plots in Figure 1c (see also 
Fig. S2 in the Supplemental Material), words referring 
to concrete referents (objects) such as washing machine 
and finger had systematically and significantly higher 
ISC-behavior values than words that did not refer to 
specific external referents (e.g., business, scenery; mean 
Fisher-z-transformed r: Mobject = .48, SD = .03 vs.  
Mnonobject = .24, SD = .09), independent-samples  
t(88) = 15.81, p = 1.93 × 10−27, Cohen’s d = 3.58. That 
is, on average, subjects’ meaning representations for 
words with specific sensory referents were approxi-
mately twice as similar as those for nonexternal referent 
(abstract) words.

Next, we examined the mechanistic origins of word-
meaning variation across individuals to address the fol-
lowing question: What aspects of word-meaning 
representations account for the individual variation? 
Motivated by cognitive and neural theories, we consid-
ered the following meaning dimensions: external- 
referent related, including sensory experience (across 
all sensory modalities) and motor-action experiences 

https://www.nitrc.org/projects/bnv/
https://www.nitrc.org/projects/bnv/
https://www.wjx.cn/
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(manipulation, navigation, and stress-related actions; 
Bi et al., 2016; Lambon Ralph et al., 2017; Martin, 2016); 
emotion-related (Kousta et al., 2011), including emo-
tional valence and arousal; and language-related (X. 
Wang et al., 2020; i.e., language descriptiveness). We 
asked independent groups of subjects (from the same 
linguistic and cultural background as subjects in the 
main experiments) to rate the 90 words on each dimen-
sion on a 7-point scale (for details, see the Method 
section). We computed the mean and variation (indexed 
by standard deviation; Fig. 4a; see also Fig. S3 in the 
Supplemental Material) for each word across subjects’ 
ratings as candidate sources for the ISC for behavior.

Each word’s ISC-behavior value was predicted using 
multiple linear regression models with these variables 
as predictors. The means of language descriptiveness 
and sensory experience were highly correlated across 
the 90 words (r = .94) and were collapsed by taking 
the average z values into a single mean language/ 
sensory-experience variable (see Fig. S3). The signifi-
cant mean predictors (mean language/sensory experi-
ence, mean arousal, and mean valence) and standard- 
deviation predictors (standard-deviation language,  
standard-deviation manipulation, and standard-deviation 
valence) were obtained separately first and then con-
sidered together (see Table S1 in the Supplemental 
Material). The mean language/sensory-experience, 
mean arousal, and mean valence predictors were sig-
nificant in the final model, together explaining 76.2% 
of the variance in the ISC for behavior: ISC behavior = 
0.74 × Mean Language/Sensory Experience – 0.33 × 
Mean Arousal – 0.17 × Mean Valence + 0.59—regression-
model significance test: F(3, 86) = 91.64, p = 1.07 × 10−26; 
coefficient (β) significance tests: mean language/sensory 
experience, t(86) = 13.55, p = 4.72 × 10−23; mean arousal, 
t(86) = −5.76, p = 1.27 × 10−7; mean valence, t(86) = 
−3.14, p = .002 (for the partial regression plot between 
mean language/sensory experience and the ISC for 
behavior, see Fig. 4b). These effects persisted when we 
included word frequency and familiarity as nuisance vari-
ables (see Table S1). As an alternative approach to deal-
ing with the correlated variables, we employed principal 
component analysis (see Table S2 in the Supplemental 
Material), and the results converged on the findings that 
the principal component with high loadings of mean 
language-descriptiveness and sensory-experience ratings 
was a significant predictor for the ISC for behavior and 
revealed that the principal component composed of stan-
dard deviations of emotion-related variables was another 
significant predictor (see the Results and Table S3 in the 
Supplemental Material). Note that we took extra caution 
to consider potential Chinese-specific orthographic prop-
erties that may contribute to the ISC effect. The majority 
of Chinese words are compound words made up of two 
or more characters, and some of the characters contain 

a semantic radical (indicative of meaning of the whole 
character, e.g., an animal). We obtained the average fre-
quency measures of all characters or the first character 
and the frequency measures of semantic radicals in all 
characters or the first character from the Chinese lexical 
database (C. C. Sun et  al., 2018). Partial correlations 
between the ISC for behavior and mean language/sensory 
experience remained significant when these variables 
were included as covariates (see Table S5 in the Supple-
mental Material).

To address the issue of whether the results were 
robust across different base-word sets, we performed 
a split-half validation analysis, in which half of 90 words 
were taken as the base-word set and randomly sampled 
10,000 times (for details, see the Method section). The 
ISC computed in this way was highly correlated with 
the main result (r = .91, SD = .08, 95% two-sided con-
fidence interval [CI] based on percentile = [.70, .98],  
p = .0001; n = 45 words). The relationships observed 
with the whole word set between ISC-behavior data 
and the three semantic dimensions were largely repli-
cated (mean language/sensory experience: β = 0.67,  
SD = 0.11, 95% CI = [0.41, 0.85], p = .0006; mean arousal: 
β = −0.29, SD = 0.13, 95% CI = [−0.50, −0.05], p = .019; 
mean valence: β = −0.16, SD = 0.09, 95% CI = [−0.32, 
0.04], p = .099).

Neural representations of word 
meanings: individual consistency 
predicted by language or sensory 
experiences

Word neural representations were constructed from 
fMRI blood-oxygen-level-dependent signals. Twenty-
one adult subjects (20 from the multiarrangement 
experiment) participated in an fMRI experiment. They 
read 90 words while in the scanner (condition-rich 
design, 10 repetitions for each word) and were asked 
to think about what the word meant; when a word in 
red appeared (catch trials), subjects were asked to 
decide whether it was semantically related to the previ-
ous word (Fig. 2a; for details, see the Method section). 
Brain activation patterns for each word in a mask com-
prising the word-meaning-associated regions were 
taken as its neural representation.

As explained in the Method section, we adopted 
multiple approaches to define word-meaning-associated 
regions, and the results were largely consistent. In the 
first approach, word-meaning-associated regions were 
defined as clusters that were sensitive to major mean-
ing-type differences (contrasting objects and nonob-
jects; voxelwise p < .005, FWE-corrected cluster-level  
p < .05). The group-level activation results included 
relatively object-preferring regions (bilateral lateral 
occipital cortex and left anterior medial fusiform gyrus) 
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and relatively nonobject-preferring regions (left poste-
rior middle temporal gyrus, bilateral anterior temporal 
lobes, left inferior frontal gyrus, and dorsal medial pre-
frontal cortex; Fig. 2b), which were highly consistent 
with findings reported in the semantic literature ( J. 
Wang et al., 2010; X. Wang et al., 2019). For each word, 
we obtained its activation pattern in this mask for each 
subject, calculated Pearson’s correlations of the activa-
tion patterns across all subject pairs and then Fisher-
transformed and averaged the values to form the ISC 
from brain data for each word.

As shown in the bar plots in Figure 2c, words refer-
ring to concrete referents (objects) such as cat and 
microwave were again highly significantly more consis-
tent across individuals than words without external ref-
erents (mean Fisher-z-transformed r: Mobject = .039, SD =  
.008 vs. Mnonobject = .029, SD = .007), t(88) = 6.23, p = 
1.59 × 10−8, Cohen’s d = 1.33. The ISC-brain and ISC-
behavior values were significantly correlated across 
words (r = .43, p = 2.20 × 10−5). We examined which 
properties of word meanings account for the magnitude 
of ISC-brain values across words. The mean language/
sensory-experience property was the only significant 
predictor in the final multiple regression model (Fig. 4b; 
see also Table S4 in the Supplemental Material), explain-
ing 37.4% of the variance in the ISC from brain data: ISC  
brain = 0.61 × Mean Language/Sensory Experience + 
0.033, F(1, 88) = 52.57, p = 1.53 × 10−10. The effect of 
mean language/sensory experience persisted when we 
included psycholinguistic confounds (see Tables S4 and 
S5) and when we used semantic principal components 
as predictors (see the Results and Table S3 in the Sup-
plemental Material). That is, the more likely it was that 
a word could be described using language and/or was 
associated with sensory experiences (typically those 
with an external referent), the more similar brain activa-
tion patterns it induced across individuals.

Validation analyses using four different word-related 
brain-mask definitions (for details, see the Method sec-
tion) yielded largely similar results to the analyses 
above. For Validation 1, without focusing on voxels 
showing different activations to predefined word types, 
we considered whole-brain ISC, selecting gray-matter 
voxels showing consistently high stability in response 
to words across subjects (following Mitchell et al., 2008).  
Figure 3 shows that the ISC rankings for object words 
and nonobject words were largely consistent across the 
size of the brain mask (number of voxels being 
selected). The positive correlations between ISC-brain 
value and mean language/sensory experience were sta-
tistically confirmed by the analyses shown in Figure 4c. 
Note that the significant correlation results for mean 
navigation and manipulation ratings were driven by 
their intercorrelations with mean language/sensory 
experience, as revealed by partial correlation analyses: 

The effects of mean language/sensory experience still 
held when analyses controlled for navigation or manip-
ulation ratings (ps < .034, for the top 200 to 5,000 
voxels), and the effects of navigation or manipulation 
disappeared when analyses controlled for mean lan-
guage/sensory experience (ps > .17). For Validation 2, 
we used the search term word in Neurosynth to identify 
brain areas consistently shown to be involved in word 
processing across a large number of studies in the neu-
roimaging literature (see Fig. S4 in the Supplemental 
Material). For Validation 3, in case any regions sensitive 
to words’ emotional meanings were not included in the 
main contrast above, we redefined the word-meaning-
associated mask as those clusters sensitive to any dif-
ferences among object versus emotional nonobject 
versus nonemotional nonobject words (see Fig. S5 in 
the Supplemental Material). For Validation 4, we calcu-
lated ISC-brain values using voxels showing the greatest 
sensitivity to object versus nonobject words in indi-
vidual subjects (rather than the group) for each subject 
pair (within the group mask identified in the remaining 
19 subjects; Fedorenko et al., 2010; see Fig. S6 in the 
Supplemental Material). ISC-brain values obtained in 
these ways were highly correlated with the main results 
and all were significantly predicted by mean language/
sensory experiences (Figs. 3 and 4; see also Figs. S4–S6). 
Finally, to examine the possibility that ISC-brain values 
may be driven by activation strength so that words with 
higher activations may show higher ISC, we extracted 
the overall activation strength for each word in a given 
mask and found that overall activation strength indeed 
significantly positively correlated with the ISC from 
brain data across 90 words in various brain-mask defini-
tions (except for ISC-brain values computed with fewer 
than 800 stable voxels in gray matter in Validation 2; r 
range = .23–.68). After we controlled for overall activa-
tion strength using partial correlation, the ISC from 
brain data still significantly correlated with mean  
language/sensory-experience ratings (r range = .24–
.67), indicating that the observed effect of activation-
pattern consistency across individuals was not fully 
attributed to overall activation-strength differences.

Discussion

We found that speakers of the same language from a 
relatively homogeneous cultural and educational back-
ground exhibit substantial differences in their under-
standing of what a word means, measured both by 
behavioral judgment about relations with other words 
and by the patterns of brain activation when reading the 
words. Both behavioral and brain measures showed that 
the magnitude of ISC for a given word can be signifi-
cantly positively predicted by how much the word is 
associated with sensory experience and language 
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descriptiveness. Behavioral and neural response patterns 
for words that refer to concrete entities (e.g., cat, refrig-
erator), which are associated with richer sensory experi-
ences and are more easily described by language, are 
more similar across different people, compared with 
words without external referents (e.g., identity, violence). 
These results were robust when other psycholinguistic 
variables, including familiarity and word frequency (and 
visual complexity in the fMRI experiment), were included 
as covariates and when multiple methods were used to 
construct behavioral measures or define brain masks.

There are debates about how to measure the internal 
representation of word (conceptual) meaning. Explicit-
definition approaches and feature-listing approaches are 
highly controversial (Marggolis & Laurence, 1999; Tyler 
& Moss, 2001). The behavioral measure of word meaning 
based on relational structure with other words, although 
requiring no explicit definition, may be argued to be 
affected by potential task biases, such as the 2D spatial 
constraints of the testing environment and the sampling 
of other words. It is thus worth highlighting that our fMRI 
experiment is more invulnerable to these potential task 
biases because the subjects were asked to simply think 
about the word meaning, with the brain activity pattern 
for that word taken as the internal word representation. 
It may still be argued that the activity pattern of some 
regions may not necessarily be related to meaning, 
although we controlled for the effects of surface visual 
properties and validated the results across multiple brain 
mask definitions. The convergence of findings that we 
obtained using these multiple approaches and control 
analyses is thus particularly reassuring.

Where do intersubject differences about word repre-
sentations come from? Decades of research on the gen-
eral cognitive neural basis of word-meaning (semantic) 
representation (i.e., common across individuals) have 
led to a consensus of a decompositional structure entail-
ing dimensions including salient sensory, motor, and 
emotion-related attributes (Binder et al., 2016; Kousta 
et  al., 2011; Martin, 2016) and nonsensory language-
derived representations (Landauer & Dumais, 1997; 
Striem-Amit et  al., 2018; X. Wang et  al., 2020). One 
source of individual variation may thus come from dif-
ferences in experiences along these dimensions— 
different people may have different types or amounts 
of sensory, emotional, or language experiences with cat 
or violence. Indeed, we found that sensory and language 
properties of words (group-mean judgments) were sig-
nificant positive predictors of how similar or different 
they were across individuals. These measures of lan-
guage descriptiveness and richness of sensory experi-
ence were highly correlated and were higher for words 
referring to objects (concrete words) than for words 
without external referents (abstract words). Although 
their effects on intersubject variability could not be 

disentangled at present, each may contribute to different 
aspects. For sensory representations, the more sensory 
experiences associated with a word, the more likely 
different people are to have at least some similar experi-
ences, that is, the word is likely to be more robust to 
differences. Taking the word cat as an example, although 
people may have different quantities or qualities of tac-
tile experiences with cats, they still have more common 
visual experiences with the form of a cat. If there is little 
sensory experience associated with a word to begin 
with, the same amount of experiential variation may 
lead to greater (sensory-derived) representation differ-
ences. For language, the rating was designed to capture 
how much of the word meaning could be derived from 
language inputs, that is, “to what extent the concept 
denoted by the word could be described and explained 
using language.” The result that words referring to con-
crete referents tend to have higher ratings on this dimen-
sion is consistent with the classic context-availability 
theory (Schwanenflugel & Shoben, 1983), which pro-
poses that the quantity and availability of verbal con-
textual information is lower for abstract concepts than 
for concrete concepts (see also Hoffman et al., 2013). 
The results here that increasing language descriptive-
ness is associated with greater intersubject agreements 
corroborate the findings that language-derived, nonsen-
sory representations are one way of representing knowl-
edge space (Striem-Amit et  al., 2018; X. Wang et  al., 
2020). Intriguingly, we did not observe positive effects 
of emotion-related properties (arousal or valence) or 
action-response properties (manipulation, navigation, 
or stress) in predicting words’ individual variability; 
however, previous literature showed that these dimen-
sions contribute to word representation (Kousta et al., 
2011) and that people differ in terms of emotional per-
ception and concepts (Brooks & Freeman, 2018). These 
null results here are difficult to interpret and may be 
related to word sampling in the current experiment.

The current observations are likely not exhaustive in 
revealing the origins of the intersubject variations in 
word understanding. The results by themselves do not 
speak to whether the meaning representation differ-
ences arise from people’s individual experiences (“nur-
ture”) or from genetic differences in terms of how neural 
circuits of various meaning components are hardwired 
(e.g., Briscoe et al., 2012). Also, it is unclear how the 
intersubject variation patterns of brain functionality 
(Mueller et al., 2013) and of word-meaning representa-
tions observed here are related. Finally, although mod-
ern semantic theories do not directly inherit earlier 
philosophical discussions, it is nonetheless worth noting 
that the current results are more in line with Locke’s 
(1690) speculation that words denoting “complex ideas” 
(e.g., abstract words) may have lower ISC and not with 
Russell’s (1948), who asserted that words entailing more 
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“abstractness of logic” may have greater individual con-
sistency. Russell’s arguments that nonsensory concepts 
have greater agreements may be relevant to specific sets 
of terms in which the definition is more logically trans-
parent (e.g., math terms). The predictive power of a 
word’s specific intrinsic property (language specificity/
sensory experience) regarding agreement across people 
highlights the need to further test factors that specifically 
modulate these properties, including culture and ideol-
ogy ( Jackson et al., 2019; Thompson et al., 2020). Par-
ticularly worth highlighting are the potential effects of 
contemporary artificial intelligence algorithms that are 
widely applied, that is, automated individually tailored 
language (and sensory) inputs, which may symmetri-
cally increase differences in language experiences and 
in turn lead to more drastic differences across people 
in word understanding.

To conclude, we have identified the extent and charac-
teristics of intersubject variations in word understanding, 
showing that the agreements and disagreements of word 
representations systematically differ across different types 
of words. The magnitude of variability can be modeled 
with the association strength of words with sensory expe-
riences and language descriptiveness, greater variability 
being associated with words without rich sensory experi-
ence or specific language descriptiveness (abstract words). 
Such disagreements on single-word meaning may at least 
partly underlie potential human communication failures, 
especially in settings that rely largely on terms without 
external referents such as politics, sociology, or legal 
domains. Increasing language descriptiveness and sensory 
experiences may help reduce miscommunication originat-
ing from these basic elements and facilitate more produc-
tive information exchanges and discussions.

Table A1. Chinese Words (Along With English Translations) Used in The Present Study

Words with external referents (N = 40) Words without external referents (N = 50)

Animals
(n = 10)

Face/body parts
(n = 10)

Artifacts
(n = 20)

Emotional nonobject 
words

(n = 30)

Nonemotional 
nonobject words

(n = 20)

蚂蚁 (ant) 脚踝 (ankle) 空调 (air conditioner) 愤怒 (anger) 协议 (agreement)
猫 (cat) 胳膊 (arm) 斧头 (ax) 反感 (antipathy) 买卖 (business)
大象 (elephant) 耳朵 (ear) 床 (bed) 冷漠 (apathy) 性质 (characteristic)
长颈鹿 (giraffe) 眼睛 (eye) 扫帚 (broom) 慈善 (charity) 概念 (concept)
熊猫 (panda) 手指 (finger) 柜子 (cabinet) 舒心 (comfortable) 内容 (content)
兔子 (rabbit) 膝盖 (knee) 椅子 (chair) 死亡 (death) 数据 (data)
老鼠 (rat) 嘴唇 (lips) 筷子 (chopsticks) 债务 (debt) 纪律 (discipline)
麻雀 (sparrow) 鼻子 (nose) 鼠标 (computer mouse) 沮丧 (depressed) 作用 (effect)
老虎 (tiger) 肩膀 (shoulder) 锤子 (hammer) 疾病 (disease) 身份 (identity)
乌龟 (tortoise) 大腿 (thigh) 钥匙 (key) 纠纷 (dispute) 方法 (method)
 微波炉 (microwave) 错误 (error) 义务 (obligation)
 铅笔 (pencil) 兴奋 (excited) 现象 (phenomenon)
 冰箱 (refrigerator) 缘分 (fate) 过程 (process)
 剪刀 (scissors) 过失 (fault) 原因 (reason)
 沙发 (sofa) 恐惧 (fear) 关系 (relationship)
 勺子 (spoon) 骗局 (fraud) 结果 (result)
 桌子 (table) 友情 (friendship) 社会 (society)
 电视 (television) 快乐 (happy) 地位 (status)
 牙刷 (toothbrush) 天堂 (heaven) 制度 (system)
 洗衣机 (washing machine) 敌意 (hostility) 团队 (team)
 爱心 (loving heart)  
 魔力 (magic power)  
 婚姻 (marriage)  
 奇迹 (miracle)  
 骄傲 (proud)  
 难过 (sad)  
 风景 (scenery)  
 光彩 (splendor)  
 创伤 (trauma)  
 暴力 (violence)  

Appendix
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