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Abstract

Primary visual cortex (V1) is generally thought of as a low-level sensory area that primarily

processes basic visual features. Although there is evidence for multisensory effects on its

activity, these are typically found for the processing of simple sounds and their properties,

for example spatially or temporally-congruent simple sounds. However, in congenitally blind

individuals, V1 is involved in language processing, with no evidence of major changes in

anatomical connectivity that could explain this seemingly drastic functional change. This is

at odds with current accounts of neural plasticity, which emphasize the role of connectivity

and conserved function in determining a neural tissue’s role even after atypical early experi-

ences. To reconcile what appears to be unprecedented functional reorganization with

known accounts of plasticity limitations, we tested whether V1’s multisensory roles include

responses to spoken language in sighted individuals. Using fMRI, we found that V1 in nor-

mally sighted individuals was indeed activated by comprehensible spoken sentences as

compared to an incomprehensible reversed speech control condition, and more strongly so

in the left compared to the right hemisphere. Activation in V1 for language was also signifi-

cant and comparable for abstract and concrete words, suggesting it was not driven by visual

imagery. Last, this activation did not stem from increased attention to the auditory onset of

words, nor was it correlated with attentional arousal ratings, making general attention

accounts an unlikely explanation. Together these findings suggest that V1 responds to spo-

ken language even in sighted individuals, reflecting the binding of multisensory high-level

signals, potentially to predict visual input. This capability might be the basis for the strong V1

language activation observed in people born blind, re-affirming the notion that plasticity is

guided by pre-existing connectivity and abilities in the typically developed brain.

Introduction

What are the multisensory or cognitive inputs to primary sensory cortices? Despite the canoni-

cal view of the primary visual cortex (V1) as a unisensory, low-level processing station, recent
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decades have provided ample evidence for multisensory integration in the early visual cortex

[1–3]. Studies have convincingly shown early visual cortex responses to, modulation of, or

causal involvement in the processing of simple sound stimuli (e.g. [4–10]; see [1] for a review.)

Usually, these V1 responses are based on low-level features of the auditory stimuli, such as spa-

tial location or temporal synchrony with visual stimuli, allowing for efficient visual responses

[11–13]. It is less clear whether the early visual cortex also receives high-level information per-

taining to object category, congruence, or language. While one study reported that V1 signal

patterns allow discrimination based on the categorical content of sounds [14], several other

studies did not find such high-level modulations [15–22].

There is one case, however, where the early visual cortex is known without a doubt to

respond to higher-level non-visual processing: the primary visual cortex (V1) of people born

blind has been shown to be involved in language comprehension and production [23–29], and

its involvement in language is often left-lateralized [23, 24, 26, 30–35] like the typical fronto-

temporal language activation observed in many neuroimaging studies of sighted people (for

reviews, see [36, 37]). This apparent role of V1 in language processing in people born blind

appears to be a marked deviation from its function in sighted individuals, where V1 is involved

in the processing of basic visual features [38–41]. Although evidence for V1 language activa-

tion in congenitally blind people is compelling, persuasive evidence for a mechanism by which

such extreme functional change from low-level visual to language processing might occur has

not been provided to date. Beyond deterioration of the visual pathways [42–45], no drastic dif-

ferences in anatomical connectivity of the visual cortex have been found between congenitally

blind people and sighted controls. Importantly, most recent research suggests that brain orga-

nization is strongly determined by anatomical connectivity present already at birth [46–49].

This view implies that functional reorganization needs to build on, and is limited by, pre-exist-

ing capacities and connections of the available tissue, even in cases of sensory deprivation

since birth [50, 51]. How can findings of language processing in primary visual cortex in the

congenitally blind be reconciled with such a view? If the hypothesis of pre-existing anatomical

connectivity and its constraints is correct, then to accord with language processing in primary

visual cortex in the blind, there must also be language processing, or related inputs, in primary

visual cortex in sighted people.

Here we tested whether language processing recruits V1 in sighted adults, with the dual

goal of testing cognitive engagement of early sensory cortices, and addressing the roots of plas-

ticity in blindness. We report a series of experiments that demonstrates V1 activation by spo-

ken language while addressing potential confounds of visual imagery and attention.

Experiment 1 employs a robust auditory sentence comprehension task, as compared with a

low-level control (backward speech, which is not comprehensible), in 20 neurologically

healthy sighted young adults, and Experiments 2 and 3 examine the potential influence of

visual imagery in an independent second cohort by testing responses to auditorily presented

abstract words, which are hard to visualize. If language indeed activates primary visual cortex

during sentence processing in a typically-developed cohort, such activation may be the basis

for the more extreme, previously unaccounted for, plasticity in blindness. Further, in the

sighted brain, it would support the notion of cognitive responsivity in the primary visual

cortex.

Materials and methods

Participants

Experiment 1. Participants were 20 young adults (5 men, ages 18 to 38, mean 21.8 years)

with normal or corrected-to-normal vision and no history of neurological disorder from the
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Georgetown University community. All were native speakers of English and had not been flu-

ent in any other language by the age of 12. All experimental protocols were approved by the

institutional review board of Georgetown University Medical Center, in accordance with the

Declaration of Helsinki. Participants provided informed consent and were compensated for

their time.

Experiments 2, 3. Participants were 14 adults with normal or corrected-to-normal vision

and no history of neurological disorder (8 men, ages 23 to 66, mean 43.85 years). All were

native speakers of Mandarin Chinese. All experimental protocols were approved by the institu-

tional review board of the Department of Psychology at Peking University, China, as well as by

the institutional review board of Harvard University, in accordance with the Declaration of

Helsinki. Participants provided informed consent and were compensated for their time.

Experimental design

Experiment 1. The fMRI language task used here was a modified version of an Auditory

Description Decision Task used to determine language dominance prior to epilepsy surgery [52,

53]. In the Forward Speech condition, participants heard short English sentences (e.g., “A big

gray animal is an elephant”, “Birthday cake lights are candles”, “Something that reflects your

image is a beaver”) and pushed a button if they considered the sentence a true statement. In the

Reverse Speech condition, they heard the same sentences played in reverse (thus rendered incom-

prehensible) and pushed a button when they heard a soft beep inserted at the end of the utterance.

Audio files with example stimuli can be found in the S1–S4 Audios. The proportion of correct

statements and reverse speech utterances with beeps was 50%. The task was designed to be easy;

performance was nearly perfect (median performance at 100% for both tasks, mean 97.2±4.5%

for sentence comprehension, mean 99.5±1.1% for beep detection). Each participant completed

two fMRI runs of 5 min and 48 s duration, each containing four 30-second blocks of each of two

experimental conditions (Forward and Reversed Speech, six utterances per block) in counterbal-

anced order, with 12-second silent rest periods at the beginning and end of the run, as well as in

between each of the eight active blocks. Aside from a fixation cross that participants were asked

to rest their eyes on throughout the scan, no visual stimulation was provided. The For-

ward>Reverse activation differences evoked by this task are highly robust and reproducible, mak-

ing them suitable for localizing language-associated brain areas across development [54] and even

in cases of atypical functional organization, such as participants with a history of chronic epilepsy

[53] or perinatal stroke [55]. Importantly, the sentences were spoken with neutral prosody, so

that potential modulation of V1 activation by emotional auditory stimuli [56] is unlikely.

Imaging data were acquired on Georgetown’s research-dedicated 3T Siemens Trio Tim scan-

ner with a 12-channel birdcage head coil. Auditory stimuli were delivered via insert earphones

(Sensimetrics S14) worn under ear defenders (Bilsom Thunder T1). Stimulus presentation and

response collection (via a Cedrus fiber optics button box) were coordinated by E-Prime 2.0 soft-

ware. Each of the two functional runs contained 100 functional (T2*-weighted) volumes cover-

ing the whole brain in 50 slices acquired in descending order and oriented parallel to the

AC-PC plane (EPI parameters: TE = 30 ms, TR = 3000 ms, flip angle = 90˚, matrix 64 × 64, slice

thickness = 2.8 mm, distance factor = 7%, resulting in an effective voxel size of 3 × 3 × 3 mm). A

high-resolution anatomical (T1-weighted) scan was acquired for co-registration (MPRAGE

parameters: whole-brain coverage in 176 sagittal slices, TE = 3.5 ms, TR = 2530 ms, TI = 1100

ms, flip angle = 7˚, matrix 256 × 256, voxel size = 1 × 1 × 1 mm).

Experiments 2, 3. Stimuli in these experiments were spoken words, each a two-character

word in Mandarin Chinese, belonging to eight categories: abstract concepts (e.g. “freedom”,

“truth”, “wish”), concrete everyday object names (e.g. “cup”, “closet”, “computer”), and six

PLOS ONE Spoken language processing activates the primary visual cortex

PLOS ONE | https://doi.org/10.1371/journal.pone.0289671 August 11, 2023 3 / 22

https://doi.org/10.1371/journal.pone.0289671


additional categories which were not analyzed in the current manuscript (astral/weather phenom-

ena—e.g. “rainbow”, “rain”; scenes—“island”, “beach”; and object features—colors and shapes,

e.g. “red”, “square”; see full detail in [57]). Each category included ten words whose imaginability

and attentional arousal (as well as other measures not used here) were rated on a 7-point scale

[58] by an independent sample of 45 sighted Chinese participants with similar levels of education.

The concrete objects and abstract concepts compared in Fig 2B differed significantly in imagin-

ability (Welch t-test contrast, p< 0.001, significant after Bonferroni correction for multiple com-

parisons including other measures not used here; [57]), but not quite in arousal (p = 0.06

uncorrected; does not surpass the corrected threshold for multiple comparisons).) During both

experiments, participants kept their eyes closed and responded with a button push to rare catch

trials (occurrences of a fruit name among the other words.) Runs with more than one missed

catch trial were excluded from the analysis, as were the imaging data associated with catch events.

During Experiment 2, the participants heard short lists of words in a block design paradigm

(8-second blocks with eight words each, baseline between blocks 8 seconds). Each run began

with a 12-second rest period. Each block contained words from one of the eight concept cate-

gories. Experiment 3 was an item-level slow event-related design and was conducted at a dif-

ferent scanning session on the same participants that participated in Exp. 2. The stimuli were

eight of the ten words of each category from Experiment 2, except for the concrete object

names (see detail above). During each of eight slow event-related runs, the participants heard

each word once, in a random order, followed by a 5-second baseline period.

Imaging data for Experiments 2 and 3 were acquired using a Siemens Prisma 3-T scanner

with a 20-channel phase-array head coil at the Imaging Center for MRI Research, Peking Uni-

versity. Functional imaging data for Experiment 2 were comprised of four functional runs,

each containing 251 continuous whole-brain functional volumes. Functional imaging data for

the single-item-level event-related Experiment 3 were comprised of eight functional runs, each

containing 209 continuous whole-brain functional volumes. Data were acquired with a simul-

taneous multi-slice (SMS) sequence supplied by Siemens: slice planes scanned along the rectal

gyrus, 64 slices, phase encoding direction from posterior to anterior; 2 mm thickness; 0.2mm

gap; multi-band factor = 2; TR = 2000 ms; TE = 30 ms; FA = 90˚; matrix size = 112 × 112;

FOV = 224 × 224 mm; voxel size = 2 × 2 × 2 mm. T1-weighted anatomical images were

acquired for coregistration using a 3D MPRAGE sequence: 192 sagittal slices; 1mm thickness;

TR = 2530 ms; TE = 2.98 ms; inversion time = 1100 ms; FA = 7˚; FOV = 256 × 224 mm; voxel

size = 0.5 × 0.5 × 1 mm, interpolated; matrix size = 512 × 448.

Data analysis

Preprocessing. Imaging data were analyzed using BrainVoyager (BVQX 3.6). Anatomical

images were corrected for field inhomogeneities and transformed into Talairach space using

9-parameter affine transformation based on manually identified anatomical landmarks. Func-

tional runs underwent slice time correction, removal of linear trends, and 3D motion correc-

tion to the first volume of each run using rigid-body transformation. The first two volumes of

each run were discarded to allow for magnetization stabilization. Each run was coregistered

with the native-space anatomical image of the same participant using 9-parameter gradient-

based alignment, and subsequently warped into Talairach space using the same affine transfor-

mation used for warping the anatomical data.

Whole-brain group-level analysis

To create group-level activation maps (Figs 1A and 2A), we smoothed the Talairach-warped

functional data with a 3D Gaussian kernel of 8 mm FWHM and conducted a hierarchical
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Fig 1. Left primary visual cortex is engaged in spoken language comprehension. A. A contrast of comprehensible

vs. reversed spoken sentences is shown on brain slices and inflated cortical hemispheres. In addition to the left-

lateralized fronto-parieto-temporal language network, significant activation is found in the ventral primary visual

cortex. CaS–Calcarine Sulcus. B. GLM parameter estimates (betas) were sampled in the left retinotopically-defined

primary visual cortex, showing significant activation for comprehensible speech and selectivity for comprehensible vs.

reversed speech. Error bars denote standard error of the mean, *p< 0.05, **p < 0.005 FDR corrected. C. Selectivity for

comprehensible speech (the beta difference between forward and reversed speech) is higher in the left V1 than in right

V1, showing slight lateralization for language, and stronger in left V1 compared with left V2 (p< 0.05 FDR corrected

for both comparisons). Error bars denote standard error of the mean.

https://doi.org/10.1371/journal.pone.0289671.g001
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Fig 2. Left primary visual cortex spoken language activation is found for abstract, unimaginable words. A.

Activation for spoken abstract words as compared to the rest baseline is shown on brain slices and inflated cortical

hemispheres. In addition to the auditory cortex and inferior frontal cortex, significant activation is found in the

primary visual cortex, despite the inability to visually imagine abstract concepts. CaS–Calcarine Sulcus. B. GLM

parameter estimates (betas) were sampled in the left retinotopically-defined primary visual cortex, showing significant

activation for spoken words, which does not differ between abstract and concrete words. C. Activation for abstract

words is significantly higher in left than right V1, showing slight lateralization for language. Error bars denote standard

error of the mean, *p< 0.05, **p < 0.005 FDR-corrected.

https://doi.org/10.1371/journal.pone.0289671.g002
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random effects analysis (RFX GLM; [59]). Each experimental condition’s predictor was mod-

eled by convolving the boxcar predictor describing the condition’s time-course with a standard

hemodynamic response function (two gamma, peak at 5 s, undershoot peak at 15 s). In addi-

tion, the model included nuisance predictors to capture participant- and run-specific effects as

well as motion-related effects (using the z-transformed motion estimates generated during

preprocessing). During modeling, voxel time courses were normalized using percent signal

change transformation and corrected for serial autocorrelations (AR2).

Activation maps contrasting the beta values (GLM parameter estimates) for the different

conditions via voxel-wise t-tests were thresholded by applying an uncorrected single-voxel

threshold of at least p< 0.001 and running BrainVoyager’s Cluster-Level Statistical Threshold

Estimator Plugin to determine a cluster-size threshold corresponding to a corrected threshold

k< 0.05.

To control for any attention effects elicited by the onset of sound after periods of rest, GLM

analyses for Exp. 1 and Exp. 2 (Figs 1A and 2A) were replicated (S3 and S4 Figs respectively)

with a brief (1TR) condition modelling auditory signal onset at the beginning of each block as

a separate predictor.

Region-of-interest analyses

Regions-of-interest (ROIs) for the primary and secondary visual cortex (V1 and V2, respec-

tively) were defined from an external group localizer [51]. The external retinotopy localizer

was acquired in a separate group of 14 normally sighted participants using a standard phase-

encoded retinotopic mapping protocol, with eccentricity and polar mapping of ring and

wedge stimuli, respectively, to measure visual retinotopic mapping [41, 60–62], delivered dur-

ing two separate experiments. The stimuli were projected by an LCD projector onto a tangent

screen positioned over the subject’s forehead and viewed through a tilted mirror. In the eccen-

tricity experiment, an expanding annulus was presented, expanding from 0 to 34 degrees of

the subject’s visual field in 30 s, repeated 10 times. The polar angle experiment presented a

wedge with a polar angle of 22.5 degrees that rotated around the fixation point, completing a

full cycle in 30 s, repeated 20 times. Both the annulus in the eccentricity experiment and the

wedge in the polar angle experiment contained a flickering (6 Hz) radial checkerboard pattern

according to standard retinotopic procedures (Engel et al., 1994) for field map mapping. In

both cases there was a 30-second period of baseline (fixation) before and after the visual stimu-

lus for baseline. Group phase analysis was conducted on the two experiments as done in other

studies [63, 64] resulting in group maps depicting the eccentricity and angle mapping aligned

to the Talairach-transformed Colin27 brain. Full experimental detail can be found at [51].

Angle (polar) mapping was used to define the borders of V1 and V2 in both hemispheres, used

as a ROI to sample activation for the language conditions in the early visual cortices (Figs 1B,

1C and 2B, 2C). V1 was further divided into three portions largely representing foveal, middle,

and peripheral visual fields based on the eccentricity mapping (S2B Fig).

Beta values (GLM parameter estimates) for each condition were sampled in individuals,

and comparisons across conditions within the same ROI (Figs 1B and 2B) were computed

with a two-tailed paired t-test. Comparisons across areas were computed based on the subtrac-

tion of beta values between forward and reversed speech for each individual (Fig 1C), and

applying a one-tailed paired t-test between regions, under the prediction that language activa-

tion would be localized to the left V1, as seen in blindness [23, 24, 26, 35]. Comparably, we

used a one-tailed paired t-test between regions to test the hypothesis that abstract word activa-

tion vs. baseline would be localized to the left V1 (Fig 2C). In addition, to investigate imagin-

ability and arousal as potential contributors to any observed activation, we explored
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correlations between language activation (GLM parameter estimate, beta values) in the left V1

ROI and imaginability and arousal behavioral ratings of the words presented in Experiment 3,

across all 56 words used in the experiment. Lastly, to ensure that the time-course of activation

characteristics resemble a genuine neural response, the averaged percent signal change with

relation to condition onset was sampled from the left V1 ROI and the standard errors were cal-

culated for each condition and plotted for each time point (S2A and S2C Fig).

To statistically correct for these multiple comparisons conducted on our ROI analyses, we

report p-values computed using the false-discovery-rate (FDR) approach [65]. Specifically, we

corrected for 5 statistical comparisons for the ROI analyses in Experiment 1: (1) V1 forward

vs. reverse speech (Fig 1B), (2) V1 forward speech vs. silent baseline, (3) left vs. right V1 and

(4) Left V1 vs. V2 (Fig 1C), and (5) the V1 eccentricity effect (S2B Fig). For Experiment 2, we

corrected for 4 statistical comparisons: (1) V1 abstract vs. concrete words (Fig 2B), (2) V1

abstract words vs. silent baseline, (3) V1 concrete words vs. silent baseline, and (4) left vs. right

V1 (Fig 2C).

Results

Experiment 1

In contrasting activation by forward and reverse speech in a whole-brain analysis, a typical left-

lateralized fronto-temporal “language” network emerged (Fig 1A), as identified by numerous

neuroimaging studies (for reviews, see [36, 37]). The primary auditory cortex was not signifi-

cantly activated because the contrasted conditions are matched in low-level auditory informa-

tion (see similarly [66]), including the sound envelope change rate, which has been suggested to

activate V1 [67]. Despite this, the primary visual cortex was significantly activated by forward

speech (S1 Fig) and more strongly activated by forward than by reverse speech (Fig 1A).

This preference was confirmed in region-of-interest (ROI) analyses extracting percent sig-

nal change from left and right V1 and V2. Left V1, our primary ROI, showed a significantly

stronger response to forward than to reverse speech (Fig 1B; paired t-test, t(19) = 4.02, FDR-

corrected p = 0.002, d’ = 1.89, one-tailed and displayed a standard stimulus-evoked hemody-

namic response for spoken sentences (S2A Fig). The response to forward speech was also sig-

nificant compared to baseline (t(19) = 2.88, FDR-corrected p = 0.012).

A comparison of the forward>reverse speech effect in retinotopically defined V1 in the left

and right hemisphere (Fig 1C) confirmed the impression from the whole-brain analysis that

the activation seemed to be at least somewhat stronger in the left hemisphere (paired t-test, t

(19) = 1.98, FDR-corrected p = 0.039, d’ = 0.91). Moreover, the forward>reverse speech effect

was slightly weaker in left V2 than in left V1 (paired t-test, t(19) = 2.06, FDR-corrected

p = 0.045, d’ = 0.95).

To test whether the V1 activations we observed here might reflect increased attention to the

onset of auditory stimulation [68], we repeated the analyses while including a confound pre-

dictor modelling a short response to the onset of the conditions. This control analysis repli-

cated the main effects (S3 Fig), making simple auditory attention effects an unlikely

explanation for the V1 language activations. It is also notable that the whole-brain activations

observed here did not include any areas of the fronto-parietal attention network [69–72]) that

one might expect to see activated if the forward speech condition elicited a significantly stron-

ger attentional response than the control condition.

Experiment 2

Could the V1 language activations in Experiment 1 stem from visual imagery, due to the con-

crete content of the spoken sentences? To explore this possibility, we investigated, in a separate
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group of sighted adults, whether V1 would show differential activation for abstract (less imag-

inable) and concrete (easily imaginable) spoken words (e.g., “freedom”, “truth”, “wish” vs.

“cup”, “closet”, “computer”). Just as for spoken sentence comprehension (Experiment 1

above), whole-brain activation for listening to blocks of abstract words as compared to inter-

block rest interval baseline (Experiment 2; see also [57]) included, in addition to vast activation

of the temporal lobe and inferior frontal cortex, also significant localized activation in the cal-

carine sulcus (Fig 2A). Again, activation was stronger in left than in right V1 (Fig 2C; paired t-

test, t(13) = 2.77, FDR-corrected p = 0.048, d’ = 1.5). Activation time-courses extracted from

left V1 resembled a typical hemodynamic response function for both abstract and concrete

words (S2C Fig). Importantly, left V1 activation did not differ between abstract and concrete

words (object names; Fig 2B; t(13) = 0.48, FDR-corrected p = 0.975, d’ = 0.27), even though

the latter were significantly more imaginable according to behavioral ratings (t(9) = 1074,

p< 0.001 uncorrected, significant with correction for multiple comparisons, d’ = 716). As in

Exp. 1, modelling the potential attention-arousing effect of the auditory onset at the beginning

of each block as a nuisance condition did not affect the main findings (S4 Fig).

Experiment 3

Last, a separate study, an event-related design of spoken words (performed on the same partic-

ipants and using most of the abstract and easily imaginable words used in Exp. 2; see methods),

allowed us to test whether left V1 activation correlated with imaginability and attentional

arousal ratings for spoken words of a variety of imaginable and abstract concept types [57].

We computed the correlation between behavioral ratings collected for these words and beta

values for each presented word within the left V1 region of interest. No correlation was found

between left V1 activation and imaginability ratings (r2(54) = 0.003, p = 0.69 FDR corrected)

or arousal ratings (r2(54) = 0.01, p = 0.90, FDR corrected), although left V1 still showed activa-

tion (above baseline) for abstract words (S5 Fig). Together, these findings suggest that the

observed forward>reverse speech activation in V1 did not result from imagery or attention

confounds.

Discussion

The primary visual cortex is widely thought to be a low-level sensory station devoted to the

processing of simple visual features [38–41]. However, there is also increasing evidence impli-

cating the primary visual cortex in aspects of low-level multisensory integration [1–3], and

some recent evidence, although still controversial, indicates that it may also receive signals

related to higher level non-visual representations, specifically non-visual imagery [14] and

working memory [73]. The present results further expand on the known multisensory infor-

mation reaching V1. We observed activation for spoken sentences in V1 of typically developed

individuals, which showed a preference for comprehensible over incomprehensible speech

(Fig 1A, 1B). Moreover, this activation tended to be stronger in left than right V1 (Figs 1A, 1C

and 2C), just like the V1 language activation in blindness [24, 26, 34, 35] and in line with the

observation of left-lateralization for language activation in the vast majority of adults regard-

less of handedness [74, 75]. It also tended to be stronger in V1 than in V2, suggesting that it

did not emerge from feedback cortico-cortical connectivity from visual language areas via

higher retinotopic cortical stations (e.g., V2; Fig 1C). The same pattern was evident in response

to spoken abstract words in a separate sighted cohort in two separate experiments (Fig 2 and

S5 Fig). Together these findings suggest that left-lateralized primary visual cortex responds to

spoken language information in typically developed sighted adults. These findings reflect on
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several key issues regarding the multisensory properties of primary visual cortex, the develop-

mental origins of reorganization in the blind brain, and the nature of brain plasticity itself.

Before we discuss these implications, we must first address why our study is the first to

highlight V1 language activation in sighted individuals despite the large number of functional

neuroimaging studies that have investigated language activation in the typically-developed

population. One likely reason is that V1 activation is small relative to that in other regions of

the frontotemporal language network, both regarding peak signal change and regarding spatial

extent. Thus, depending on the statistical power of the experiment and applied thresholds, V1

activation may not be apparent in all functional neuroimaging studies contrasting comprehen-

sible speech with silence, non-speech stimuli, or incomprehensible speech stimuli. However, it

is apparent in some [76–84]. In studies directly looking for early visual cortex recruitment in

blindness, which included sighted participants as a control group, there is at times mention of

responses in the sighted [24, 85], but often, possibly due to statistical analysis and power or to

the specific contrasts used, significant activation in the sighted is either not found [23, 28, 32,

86, 87], or is (accurately) reported as smaller than that of the blind group without being tested

for significance in and of itself [26]. In summary, while our experiments are not the first to

show V1 activation in language tasks in sighted adults, our focus on this activation and exami-

nation of its properties with relevant controls allows us to interpret it as a meaningful response

to spoken language.

To do so, we must address whether our findings could be explained by confounds such as

differences in visual stimuli, visual imagery or increased attention to speech which in them-

selves can generate responses in V1 [88–91], as has been suggested for several other studies

observing early visual cortex activation by language stimuli [76, 77, 79, 82]. Visual stimulation

was matched and essentially absent throughout our experiments: In Experiment 1, participants

were instructed to rest their eyes on a fixation cross throughout, matching visual stimulation

during forward and reverse speech blocks; and during Experiments 2 and 3, participants lis-

tened with their eyes closed and blindfolded. This rules out unmatched visual stimulation

between the conditions as a potential explanation for the observed V1 activation.

There are also several reasons to argue that global attention is an unlikely explanation for

the V1 activation observed here. First, when attention to sounds activates V1, it likely serves a

role in spatial attention orientation, found more strongly in peripheral V1 [13, 91, 92] and

stems from direct and indirect anatomical connectivity between auditory cortices and mostly

(though not only) peripheral retinotopic locations of V1 found in primates and humans [93–

99]. In contrast, the activation pattern in comparing forward and reversed speech in our study

was not peripherally localized (S2B Fig; ANOVA for an eccentricity effect in left V1 F(2,143) =

0.01, p = 0.99). Second, no activation was observed in the fronto-parietal attention network

(typically bilateral or right-lateralized; [69–72]) in our whole-brain analysis, which would be

expected if there were significant attention differences between the conditions (either due to

larger top-down attention allocated to processing the comprehensible stimulus, or to larger

effort to selectively attend to that stimulus over the scanner noise). Moreover, including an

additional nuisance regressor to capture attention effects associated with sound onset did not

abolish the V1 response in either block-design experiment (S3 and S4 Figs). Lastly, activation

in left V1 was not correlated with the arousal ratings of the heard words in Experiment 3. All

this makes it unlikely that attention is the primary driver for the V1 responses we observed.

Similarly, it does not appear to stem from visual imagery. Visual imagery may activate and

its content can be decoded from the primary visual cortex [89, 100–106]. However, imagery

responses are stronger in association rather than primary cortex [107, 108] and are typically

bilateral [104, 108, 109]. When V1 activation is reported for visual imagery, it is usually associ-

ated with explicit imagery of high-resolution detail of images [89, 110, 111]. In contrast, our
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sentence comprehension task did not require explicit imagery or attention to visual detail, acti-

vation was slightly stronger in V1 than V2 (Fig 1A, 1C), and elicited no activation or deactiva-

tion as compared to rest in other retinotopic and association visual areas (S1 Fig). Moreover,

we observed the same localized V1 activation in a whole-brain analysis for abstract words

(Fig 2A and 2C), and it was no weaker for abstract than concrete words (Fig 2B) even though

the former were rated as significantly less imaginable. The V1 response also was not correlated

with imaginability ratings (Experiment 3). This pattern of results argues against visual imagery

as an explanation for the observed V1 activation.

Having ruled out these potential confounds to the best of our ability, we lean towards inter-

preting the V1 responses to forward>reverse speech (Experiment 1) and to spoken words of

varying imaginability (Experiments 2 and 3) as activation driven by spoken language. How-

ever, our results do not reveal which aspect(s) of spoken language processing are contributing

to this activation. Our reversed speech condition controls for several aspects, such as the over-

all spectral and temporal envelope of the forward speech stimuli, which may in itself drive V1

activation [67, 68]. Nonetheless, it does differ from the forward speech condition in several

ways beyond the lack of linguistic information and meaning. One difference between the for-

ward and reversed speech is that reverse speech contains sounds that are not usually (and in

some cases cannot be) produced by the human vocal apparatus. If V1 response are driven by

the visual or cross-modal associations of spoken language’s common speech sounds [112], this

could also form a difference in Exp. 1. Further, although reversed speech is well matched to

forward speech for long-term spectrotemporal characteristics, including the overall spectral

and temporal envelopes, time-reversal disrupts local spectrotemporal patterns. Yet, it appears

unlikely that V1 would be more sensitive to these features than A1, which does not show dif-

ferences between reversed and forward speech (Fig 1A). The most obvious difference between

forward and reverse speech remains the presence of and attention to linguistic information

and meaning. This difference is what the present study shares with the other studies that also

found V1 language activation in sighted adults [76–84]. All these studies were conducted using

different designs and stimuli, and while each individual one may have potential confounds, the

most parsimonious explanation for the V1 activation common to all of them is what all studies’

contrasts have in common with each other: linguistic and semantic processing.

How might linguistic information reach V1 and what role could it play? Primary sensory

cortices receive information from multiple cortical and subcortical stations. Specifically,

beyond thalamic LGN and pulvinar projections, primary visual cortex receives input from

auditory cortices, parietal cortex and other regions including frontal cortex in primates and

other mammals [94–96, 98, 113–119]. These feedback pathways [119, 120] allow for multisen-

sory integration even in V1 [1–3, 9, 121], along with integration of reward value information

[122, 123]. Relevant non-visual information can affect early visual cortex excitability [4], and

interact with visual EEG alpha wave phase [6, 8, 124]. Many studies have shown early visual

cortex responses to, modulation of, or causal involvement in the processing of simple sound

stimuli (e.g. [4–10]; see [1] for a review), often based on their spatial location or temporal syn-

chrony [11–13]. However, it is less clear whether early visual cortex receives information per-

taining to high-level auditory information such as object category, congruence, or language.

Vetter and colleagues [14, 125] showed that V1 signal patterns can discriminate the categorical

content of sounds both in sighted and congenitally blind individuals, but others did not find

such high-level modulations [15–22]. Moreover, recent studies showed that the primary visual

cortex may represent information pertaining to the temporal envelope for complex sounds

[67, 68], suggesting that the successful discrimination of sound category from V1 activation

patterns could have been based on mid-level properties of the sounds rather than high-level

semantic category information. However, in our experiment, the sound temporal envelope
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modulation frequency was maintained in the reversed speech control condition, which dem-

onstrates that the preference of V1 for comprehensible speech goes beyond sound envelope.

Although the representational content of language responses in V1 will need to be further

addressed by multivariate analyses, our results provide additional evidence for semantic pro-

cessing of auditory stimuli in V1. Theoretically, these cross-modal and higher-level inputs to

V1 could play a role in predictive coding, whereby predictions of future states and inputs

enables visual cortex to anticipate coming events [119, 126–128] and allows for efficient coding

and adapting to the everchanging environment [3, 117, 119]. How language comprehension

fits into this framework is uncertain. Language input into V1 may allow integrating contextual

information that enables visual cortex to anticipate coming events [119, 126, 127]. Alterna-

tively, it may play a simpler role in alerting spatial or overall attention [13, 129], without con-

veying specific content. What we tentatively interpret as V1 language activation may even be

epiphenomenal altogether; our data do not speak directly to these alternative explanations,

which will need to be addressed in future work. Importantly, accounts of predictive use of

speech information would have to reconcile the level of representation of incoming high-level

inputs with the spatial and low-level nature of V1 (e.g., [129]), such that these types of informa-

tion can be integrated in a meaningful way.

While our data cannot speak to the functional role of V1 language activation in the sighted,

the resemblance of the V1 activation observed here to that seen in people born blind is intrigu-

ing. In people born blind early retinotopic visual cortices, including V1, are activated by high-

level cognitive tasks such as language, verbal memory and executive function [23–28, 31, 32,

34, 86, 130–132]. Stimulating primary visual cortex affects Braille reading [133] and verb gen-

eration [33] suggesting that, at least in people born blind, this activation may indeed contribute

to language processing. The fact that similar (albeit weaker) V1 language activation can be

seen in the sighted brain suggests that such activation in the blind may not require massive

changes in brain organization. This is particularly important because despite evidence suggest-

ing increased functional connectivity between early visual cortex and the inferior frontal lobe

in the blind [51, 134–138], no anatomical evidence for such large changes has been identified

to date. Rather, differences in anatomical connectivity between sighted and early blind individ-

uals, although evident in some animal models [139–142], in humans appear to be limited in

scope, mostly to the deterioration of the visual pathways in the blind [42–45]. Responses to

language in V1 in the sighted indicate that even major functional reorganization (e.g. func-

tional pluripotency [143]) may not be needed either. Rather, our data suggest a more conserva-

tive explanation of V1’s language recruitment in blindness: little reorganization of V1

structure or function (perhaps in the shape of unmasking [144], and additional local changes)

is required to support language recruitment of deprived cortex because it also recruits non-

deprived cortex, albeit to a lower extent. This is in line with similar explanations that have

already been proposed for non-visual responses in the visual cortex in blindness for other per-

ceptual [48, 145–147] and cognitive [148, 149] domains. Importantly, no comparable explana-

tion was possible for language recruitment in V1, given that V1 language responses were not

reported in the sighted brain. Our evidence here closes this gap, and reconciles the seemingly

inordinate plasticity for language in people born blind with current views of connectivity-

driven functional brain organization [46–49, 150]. Thus, we contribute to a unifying explana-

tory framework for findings in the primary and association cortices in the blind, based on

extant non-visual functions of the visual cortex.

In summary, our findings expand on the known non-visual, cognitive inputs to the primary

visual cortex and suggest its modulation also by cognitive inputs even in the sighted brain, pos-

sibly as part of a predictive coding mechanism guiding visual perception. These findings also

provide evidence that language-driven visual cortex activation in the blind can be explained
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without proposing drastic changes to cortical tissue connectivity or function. This suggests

that human cortical plasticity is still limited by innate anatomical structures and functional

characteristics and is not unconstrained even following extreme changes in early experience.

Supporting information

S1 Fig. Left primary visual cortex is activated by spoken language. A contrast of comprehen-

sible spoken sentences as compared to baseline is shown on brain slices and inflated cortical

hemispheres. In addition to the auditory cortex and left-lateralized fronto-parieto-temporal

language network, significant activation is found in the primary visual cortex, accompanied by

deactivation of other parts of early visual cortex. CaS–Calcarine Sulcus.

(DOCX)

S2 Fig. Activation for speech comprehension in primary visual cortex. (A) Time course of

activation from Experiment 1 was sampled from retinotopic left V1, showing typical BOLD-

shaped response in V1 for speech, which is higher for forward as compared to reversed speech.

(B) GLM parameter estimates (betas) were sampled in the left retinotopically-defined primary

visual cortex divided based on eccentricity, showing that the activation for forward speech

does not differ between foveal, middle and peripheral-representing V1 sections. (C) Time

course of activation from Experiment 2 was sampled from retinotopic left V1, showing typical

BOLD-shaped response in V1 for abstract and concrete words.

(DOCX)

S3 Fig. Left primary visual cortex is engaged in spoken language comprehension when

including a “block onset” predictor to control for bottom-up attention effects. This figure

is provided for comparison with Fig 1. The underlying analyses are the same except for the

inclusion of an additional nuisance predictor in the GLM to capture the bottom-up attention

effects that might occur at the beginning of each block, at the onset of auditory stimulation.

Even after including this additional predictor, a left-lateralized fronto-temporal language net-

work is clearly evident (A), left V1 activation is significantly stronger for comprehensible for-

ward than incomprehensible reverse speech (B), and the forward>reverse effect is slightly

stronger in left V1 compared to right V1 and left V2 (C). **p< 0 .01, *p < 0.05 FDR cor-

rected.

(DOCX)

S4 Fig. Left primary visual cortex spoken language activation is found for abstract,

unimaginable words when including a “block onset” predictor to control for bottom-up

attention effects This figure is provided for comparison with Fig 2. The underlying analyses

are the same except for inclusion of an additional nuisance predictor in the GLM to capture

the bottom-up attention effects that might occur at the beginning of each block, at the onset of

auditory stimulation. Even after including this additional predictor, activation of the primary

visual cortex for abstract words is clearly evident (A), with no difference in response between

abstract and concrete (object name) words (B; p = 0.94), and the response to abstract words is

stronger in left V1 compared to right V1 (C). *p < 0.05 FDR corrected.

(DOCX)

S5 Fig. Left primary visual cortex spoken language activation is replicated for abstract

words in Experiment 3. Activation for spoken abstract words in Experiment 3 as compared to

the rest baseline is shown on brain slices and inflated cortical hemispheres. In addition to the

auditory cortex and inferior frontal cortex, significant activation is found in the left primary
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visual cortex, replicating the findings of Experiments 1 and 2. CaS–Calcarine Sulcus.

(DOCX)

S1 Audio. Example of a correct spoken sentence as used in Experiment 1.

(WAV)

S2 Audio. Example of an incorrect spoken sentence as used in Experiment 1.

(WAV)

S3 Audio. S1 Audio played in reverse and thus rendered incomprehensible.

(WAV)

S4 Audio. S2 Audio played in reverse and thus rendered incomprehensible.

(WAV)
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