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S.-W. Wu, M. F. Dal Martello, and L. T. Maloney (2009) evaluated subjects’ performance in a visuo-motor task where
subjects were asked to hit two targets in sequence within a fixed time limit. Hitting targets earned rewards and Wu et al.
varied rewards associated with targets. They found that subjects failed to maximize expected gain; they failed to invest
more time in the movement to the more valuable target. What could explain this lack of response to reward? We first
considered the possibility that subjects require training in allocating time between two movements. In Experiment 1, we
found that, after extensive training, subjects still failed: They did not vary time allocation with changes in payoff. However,
their actual gains equaled or exceeded the expected gain of an ideal time allocator, indicating that constraining time itself
has a cost for motor accuracy. In a second experiment, we found that movements made under externally imposed time
limits were less accurate than movements made with the same timing freely selected by the mover. Constrained time
allocation cost about 17% in expected gain. These results suggest that there is no single speed–accuracy tradeoff for
movement in our task and that subjects pursued different motor strategies with distinct speed–accuracy tradeoffs in different
conditions.
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Introduction

Recently, Wu, Dal Martello, and Maloney (2009)
investigated a visuo-motor task where subjects were
required to plan not one but two movements in rapid
succession within a fixed time limit. Examples of the
sequential movement task of Wu et al. are diagrammed in
Figures 1A and 1B. Before movement initiation, the
subject has as much time as desired to view the targets
and plan the movements. Once the subject has initiated
movement, she must attempt to touch both targets within
a fixed time limit. If she fails to complete both movements
within the time limit, she receives no reward. Otherwise,
she receives rewards for the targets she touched. In
Figure 1A, the subject can earn 10 points for each target.

In Figure 1B, in contrast, the second target is worth
50 points.
Wu et al. (2009) developed and tested a model of

speed–accuracy tradeoff (SAT) for each of the two
movements and used it to predict how subjects should
allocate time in order to maximize their expected gain. A
key prediction of their model was that subjects should
invest more of the available time in the movement to the
more valuable target. Wu et al. found that subjects either
did not vary their time allocation at all, or varied it in the
wrong direction, even when one target was five times
more valuable than the other.
Given past research, this outcome is surprising. People,

for example, do trade off viewing time and movement time
to maximize the probability of hitting targets (Battaglia &
Schrater, 2007). People exhibit good knowledge of their

Journal of Vision (2010) 10(6):1, 1–17 http://www.journalofvision.org/content/10/6/1 1

doi: 10 .1167 /10 .6 .1 Received December 29, 2009; published June 4, 2010 ISSN 1534-7362 * ARVO

mailto:hang.zhang@nyu.edu?subject=http://www.journalofvision.org/content/10/6/1
mailto:hang.zhang@nyu.edu?subject=http://www.journalofvision.org/content/10/6/1
http://homepages.nyu.edu/~sww214
http://homepages.nyu.edu/~sww214
mailto:shihwei@caltech.edu?subject=http://www.journalofvision.org/content/10/6/1
mailto:shihwei@caltech.edu?subject=http://www.journalofvision.org/content/10/6/1
http://psych.nyu.edu/maloney/
http://psych.nyu.edu/maloney/
mailto:ltm1@nyu.edu?subject=http://www.journalofvision.org/content/10/6/1
mailto:ltm1@nyu.edu?subject=http://www.journalofvision.org/content/10/6/1
http://www.journalofvision.org/content/10/6/1


own SAT (Augustyn & Rosenbaum, 2005) in single
movements and they do vary their timing so as to nearly
maximize expected gain in a single speeded reach task
whose payoff declined with movement time (Dean, Wu, &
Maloney, 2007). In a multi-target sequential movement
with no strict time constraint, people move more slowly
for targets that are smaller than others (Smiley-Oyen &
Worringham, 1996).
In this article, we consider possible explanations for

subjects’ performance in Wu et al.’s (2009) study. One
possibility is that people need practice in allocating time
in order to learn how time allocation separately affects
accuracy in the two movements. In Wu et al.’s experi-
ment, subjects did practice the task extensively. However,
during the practice session, the values of the targets never
varied. As a consequence, subjects had no incentive to
explore how spatial accuracy in the two movements varied
with changes in time allocation.
In the first experiment of the present study, we

explicitly trained subjects to vary their allocation of a
fixed amount of time between the two movements before

assessing how they varied time allocation when the
rewards associated with the two targets varied.
The training also allowed us to evaluate the possibility

that although people can arbitrarily and strategically vary
the time they allocate to single movements, they are
simply unable to allocate time arbitrarily in making two
movements. Previous work indicates that people tend to
apply the same proportion of time to parts of a sequence
of movements no matter how long the total movement
time is (Carter & Shapiro, 1984). Of course, this result
does not show that people cannot vary time allocation,
only that they do not do so in the absence of incentives.
The results of the first experiment will lead us to reject

the explanation just advanced. The failure to maximize
gain observed in Wu et al. (2009) is not simply due to a
lack of training in time allocation. The results will
motivate a second possible explanation, that constrained
time allocation in itself might reduce accuracy of the
sequential movements. If this were the case, it would
challenge the idea that there is a simple tradeoff between
time and accuracy embodied in an SAT function. We
return to this point in the Discussion.
In a second experiment, we estimated the cost of

constrained time allocation by comparing two conditions.
In the first condition, subjects were free to allocate time as
they wished in attempting to hit two targets in sequence
(the task of Wu et al., 2009; Figures 1A and 1B). In the
second condition, they were required to carry out the same
task but allocating time as dictated by the experimenter.
However, the time allocation imposed by the experimenter
was set to be the same time allocation freely chosen by the
subject in the first condition. The effect on the subject’s
performance will prove to be an additive increase in
spatial uncertainty independent of the time spent on the
movement.

Experiment 1: The effect
of training

The experiment consisted of two sessions, training and
test. The task in the test session was similar to that of Wu
et al. (2009) just described. Before the test session, the
subject completed a training session in which the subject
was required to touch the first target within a specified
time window and then to touch the second within second
time window centered on 600 ms. Failing to hit within
either time window resulted in a loss of all reward for that
trial. We systematically varied the first time window from
trial to trial. The subject effectively practiced allocating
the total movement time available (600 ms) between the
two movements.
We refer to the tasks in the training and test sessions as

the constrained timing task and the choice timing task,
respectively. We were interested in whether subjects who

Figure 1. The sequential movement task in one condition of Wu
et al. (2009). At the beginning of each trial, the subject placed her
right index fingertip on a red starting circle. Once she began to
move, the subject had 400 ms total time to attempt to touch two
color-coded targets in a specified sequence (blue, then green).
Subjects received rewards for each target they touched. They had
as much time as desired to plan their movements. Timing began
only when they moved away from the red start point. (A) The
rewards are equal. (B) The reward for the second target is five
times greater than that for the first.
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had received training in the constrained timing task would
later vary their time allocation in the test condition so as
to increase their expected reward.

Methods
Apparatus

A touch monitor (ELO IntelliTouch 17-in. LCD
monitor) was mounted vertically on a framework (Struc-
tural Framing System, McMaster Carr Inc.). This framing
system was specifically selected to minimize the vibration
of the setup caused by the speeded reaching movements to
the monitor. The experimental room was dimly lit. The
experiment was run using the Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997) on a Pentium 4 Dell Optiplex
GX280. To optimize the recording accuracy of endpoint, a
touch screen calibration procedure was performed for
each subject at the beginning of each session.

Stimuli

Figure 2 provides a schematic of the stimulus display
during the training trials (Figures 2A and 2C) and during

the test trials (Figures 2B and 2D). The starting position
on each trial was marked by a red filled circle of 11-mm
diameter on the left side of the screen. The first target was
136 mm to the right of the starting position. The second
target was 136 mm right to the first target. Targets were
colored filled circles of 11-mm diameter, each surrounded
by a concentric ring four times larger. The purpose of
these “outer circles” was to force the subject to attempt to
hit both targets on every trial rather than, say, skipping the
first target and moving directly to the second. If the
endpoint of either movement fell outside the correspond-
ing outer circle, the subject received no reward for the
trial. The value (in points) of a target was shown
numerically outside and above the outer ring. In the
choice timing task, to emphasize the value differences,
different values were rendered in different colors. All
subjects knew they would receive US/1 for every 1000
points earned.
A horizontal time bar was presented near the top of the

screen. Timing began only when the subject’s finger left
the starting position and consequently subjects could
spend as much time as desired planning their movements
before initiating the first.

Figure 2. An illustration of the sequential movement tasks. (A) The constrained timing task in the training session. Time windows marked
on a timing bar specified the required movement durations. The colors of the first and second time windows corresponded to the colors of
the first and second targets. (B) The choice timing task in the test session. The first and second targets were silver and golden,
respectively. Silver targets were worth 10 points. Golden targets were worth 50 points. (C) Feedback for the constrained timing task.
Vertical lines on the time bar marked the times when the subject hit each target. Dots (shown here in red to improve visibility) marked the
subjects’ spatial endpoints. (D) Feedback for the choice timing task for the last four subjects, similar to feedback of the constrained timing
task. Feedback for the first four subjects consisted of a report of total winnings or written messages specifying that they had violated one
of the conditions for a reward (e.g. “You were too slow”).
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In the constrained timing task, the time bar contained
two color-filled rectangles, whose colors corresponded to
those of the targets and whose positions and widths
relative to the whole bar indicated the required time
windows. The time values of their centers were also
marked above in milliseconds. Each time window was 80
ms wide. To encourage accuracy in timing, hitting a target
within the central 40 ms of its time window was triply
rewarded for that target when all other reward require-
ments were met. In the choice timing task, only the right
end of the time bar was marked with a number (Figures 2B
and 2D), the time limit, which was identical to the upper
limit of the second time window in the training session.
At the end of each trial, subjects received feedback on

their performance (Figures 2C and 2D). A dot marked the
endpoint of each of two reaches and a vertical line
imposed on the time bar indicated the time of completion
of each reach. If a trial was eligible for rewards, the
subject received the specified rewards for each target hit.
The first four subjects in the choice timing task were

given feedback consisting of a summary of the amount
earned in the trial and whether the temporal or spatial
requirement was violated, similar to the feedback of Wu
et al. (2009). The remaining four subjects received
additional graphical feedback specifying their errors in
space and in time as described above.

Procedure

All subjects took part in the training session and the test
session. A subject would participate in the two sessions on
separate days but within 48 hours of each other. At the
end of a session, subjects collected all they had earned in
that session.
The subject started a trial by putting her finger on the

starting position. Then the two targets, the reward values,
and the time bar appeared. After the subject reached to the
two targets, she received feedback. The whole display
remained visible until the subject pressed the space bar on
the keyboard to initiate the next trial. For each trial, we
recorded the arrival and departure times of each reach
(relative to the time the finger left the starting position),
the endpoints of the movements, and the score.
The training session (constrained timing task) included

four timing conditions. The second time window always
ended at 600 T 40 ms, while the first time window could
end at 180, 260, 340, or 420 T 40 ms. Thus, we asked
subjects to divide 600 ms in the proportions 180:420,
260:340, 340:260, or 420:180. Each target was worth
10 points (/0.01). There were 10 experimental blocks of
80 trials for the constrained timing task, i.e., 10 blocks �
80 trials = 800 trials in total.
The first four blocks each contained a different timing

condition, whose order was counterbalanced across sub-
jects. To help the subject get a sense of timing, in these
four blocks, beeps were sounded during the required time
windows. The second four blocks were identical to the

first four but with no auditory cues. The 9th and 10th
block had 20 trials from each timing condition, randomly
mixed. The 10th block was performed in the test session
before the choice timing task, serving as a test of the
stability of training effects.
At the beginning of the training session, subjects were

introduced to the constrained timing task in a warm-up,
no-reward block with looser timing requirements. Only
after having completed at least 10 trials and scoring at
least three successes could the subject begin the exper-
imental blocks. The subject was encouraged to take breaks
(3 min) between blocks and shorter breaks as needed (20 s)
in between trials to minimize the impact of fatigue. The
training session took approximately 60 min to complete.
In the test session, three value conditions were

constructed to reveal subjects’ timing strategies. The
values of the first and second targets were (10 50), (10 10),
or (50 10) points. The time limit to finish the two reaches
was always 640 ms. The subject completed five exper-
imental blocks. Each block included 20 trials from each
value condition, randomly interleaved. In total there were
5 blocks � 60 trials = 300 experimental trials. A similar
warm-up procedure was adopted as that in the training
session. The test session took approximately 30 min to
complete.

Subjects

Eight subjects, four female and four male, participated.
Subjects, except subject S02, were unaware of the purpose
of the experiment. S02 was aware of Wu et al.’s (2009)
study and knew explicitly that the expected gain depends
on the allocation of movement times.
All subjects were right handed and had normal or

corrected-to-normal vision. Subjects gave informed con-
sent prior to the experiment. The subjects each received
US/24 for their time as well as a performance-related
bonus based on points earned. Total payment, including
any bonus, ranged from US/33 to US/47 across subjects.

Model of optimal sequential movement planning

Our interest is in the strategy people would use for
the choice timing task. Based on statistical decision
theory (Berger, 1985; Blackwell & Girshick, 1954;
Trommershäuser, Maloney, & Landy, 2008), we modeled
an ideal mover who selects a movement strategy that
maximizes her expected gain and compared the subject’s
behavior with the ideal mover. This model is identical
to that developed and tested by Wu et al. (2009).
The mover’s expected gain in a trial could be formulized

as the sum of her expected gain for each target:

EGðsÞ ¼
X2
i¼1

PðHi & CksÞRi; sZ S; ð1Þ
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where s is a motor strategy, S is the set of all possible
strategies, Ri is the value of the ith target, Hi is the event
of the ith target being hit, and C is the event that the trial
is eligible for rewards. As described previously, a trial was
eligible for rewards if both reaches fell within the outer
rings of the targets and the second movement was
completed before the time limit.
For our purposes, the choice of visuo-motor strategy s is

equivalent to the selection of movement time in the
sequential reach, more particularly, the ratio of the
movement time for the first reach, t1, to the total
movement time, T. The underlying basic idea is to trade
off between the movement times of the two reaches. With
the ideal mover reduced to an “ideal time allocator,” we fit
the model of Wu et al. (2009) to the data after testing its
assumptions.
First, we assume that the mover always aims for the

center of the circular target. The subject could in principle
aim for the nearer edge of the small target region and
thereby reduce the distance traveled at the cost of
increasing the likelihood of missing the target. However,
as shown by Wu et al. (2009), such a strategy results in no
benefit for such small targets separated by relatively large
distances.
Second, we assume that whether the second target is hit

is independent of whether the first target is hit conditional
on the allocation of time. We tested and failed to reject
this independence assumption in our data as did Wu et al.
(2009). We describe this test below.
With these assumptions, we rewrite Equation 1 as:

EGðt1kTÞ ¼ PðVÞ½R1PðH1kt1ÞPðO�2kt2Þ
þ R2PðH2kt2ÞPðO�1kt1Þ�; ð2Þ

where ti is the planned movement time for the ith reach,
T is the total movement time, P(V) is the probability of
completing both movements before the time limit,
P(Hikti) is the probability to hit the ith target given the ith
movement time is ti, and P(O

�
ikti) is the probability to hit

within the outer ring of the ith target when the ith
movement time is ti. T, P(V), and Ri are constants. To
express expected gain purely as a function of time
allocation, t1/T, we need to determine the nature of t2,
P(Hikti), and P(O

�
ikti).

The total time T of a sequential movement consists of
three parts: the first movement time t1, the dwell time on
the first endpoint tdwell, the second movement time t2. We
found that we could readily predict dwell time: the ratio of
dwell time to total time is a linear function of T/t1:

tdwell=T ¼ mþ kT=t1; ð3Þ

where m and k are parameters estimated from the data
separately for each subject. Assuming that the subject
chooses the same timing across trials of a condition, we
compute the mean tdwell/T and T/t1 for each of the four

timing conditions in the training session and three value
conditions in the test session to estimate m and k. Then we
could write t2 as:

t2 ¼ Tð1j t1=Tjmj kT=t1Þ; ð4Þ

For P(Hikti) and P(O
�

ikti), we adopted the following steps.
First, we obtained the relation of the standard deviation of
a movement’s endpoint to its movement time. We model
the standard deviation of the ith movement separately for
the directions parallel and perpendicular to the movement
based on Schmidt, Zelaznik, Hawkins, Frank, and Quinn
(1979):

A¬ tið Þ ¼ b¬
di
ti
þ c¬;

A6 tið Þ ¼ b6
di
ti
þ c6;

ð5Þ

where di is the distance of the ith movement, and bk, b6,
ck, and c6 are estimated parameters. We assume that the
subject has the same timing plan throughout a condition
and the first and second movements have the same
parameters. We compute Ak, A6, and di/ti for the four
timing conditions in the training session to estimate the
parameters.
Second, we assume that the endpoint of the ith reach,

vY i, is distributed as a bivariate Gaussian random variable
whose mean is the center of the target, 2Y , and whose
covariance is

X
i
¼

A2
¬ðtiÞ 0

0 A2
6ðtiÞ

0
@

1
A; ð6Þ

so that the probability density function of endpoint
distribution is,

fi v
Y
k2
Y
; tið Þ ¼ 1

2:k
X

ik
1=2

e
j1

2
ð vYj2Y ÞT

Pj1

i
vYj2Yð Þ : ð7Þ

Finally, the probability of hitting the target or outer
circle can be computed as the integration of fi(v

Yk2Y , ti) over
the target or outer circle using the integration method of
DiDonato and Jarnagin (1961):

PðHiktiÞ ¼
ZZ

Bð0;rÞ

fiðvYk2Y ; tiÞdvY

PðO�iktiÞ ¼
ZZ

Bð0;4rÞ

fiðvYk2Y ; tiÞdvY
; ð8Þ

where r and 4r are respectively the radius of the target and
outer circle. Although the subject is supposed to aim at the
center of the target, there can be constant error in their
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movements as found in other studies (Wright & Meyer,
1983). We compute the constant errors for the first and
second targets in the parallel and perpendicular directions
as an average across all trials of the experiment. As noted
above, this error had negligible effect on subjects’
expected gain.

Results

Trials with either endpoint out of the outer circle or
with a total movement time greater than 1000 ms were
excluded from the analysis. No more than 2.5% trials were
excluded for each subject.

The ability of constrained timing and the effect of
training

The failure of effective time allocating in sequential
movements as found in our previous study might indicate
that people cannot divide time arbitrarily at all or cannot

do so before necessary training. The training session
allowed us to test for this possibility. For each subject, we
computed the mean ratio of the first movement to the total
movement time, t1/T, for each timing condition and
regressed it against the required ratio.
If people were not able to follow the timing require-

ment, the slope of the regression would be zero. In
contrast, if people correctly executed every time alloca-
tion specified by the experimenter, the slope would be
one. The data fell between these extremes. Figure 3A
shows the results of our first subject S01. When the
required t1/T was 180/600, S01 spent a larger share of
time on the first movement than required, while when
required t1/T was 340/600 or 420/600, the reverse. That is,
mean observed t1/T in both higher and lower required t1/T
conditions approached to a middle value. This pattern
repeated itself with all subsequent subjects. Figure 3B
shows the fitted regression line for all the eight subjects
and the average across subjects.
For each subject, we computed a 95% confidence

interval for the slope using a bootstrap method1 (Efron

Figure 3. Timing performance in the training session. (A) Subject S01’s observed mean t1/T plotted against the required t1/T in each of the
four timing conditions with superimposed regression line. (B) Observed-required t1/T regression lines for each of eight subjects. Only one
slope was not significantly greater than zero (p 9 .05). All slopes were significantly less than one. A line whose slope is the mean of the
slopes of the subjects is plotted in black. (C) The mean observed t1/T across time averaged across subjects throughout the training
session. Each trial group represents a cluster of 20 trials. The horizontal lines each denote the required t1/T for one of the four timing
conditions. Dots with the same color as a line mark mean observed t1/T for each group in that timing condition.
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& Tibshirani, 1993), resampling the movement times for
each timing condition with 10,000 runs. At the 95%
confidence level, all the slopes were greater than zero
except for one subject, demonstrating that subjects were
able to voluntarily vary their timing in sequential move-
ments. However, all slopes were lesser than one, implying
that subjects did not do the constrained time division
perfectly and instead contracted toward a preferred t1/T
ratio. The mean slope across subjects was 0.52. Consistent
with the above individual analysis, the mean slope, by
two-tailed Student’s t-tests, was significantly greater than
zero, t(7) = 5.72, p G .001, and significantly smaller than
one, t(7) = j5.20, p = .001.
To examine whether training helped, we partitioned the

200 trials in each timing condition into 10 groups of 20
trials and computed the absolute difference of mean
observed t1/T ratio to required t1/T ratio for each group.
We examined the training effect by calculating the
regressive slope of the abstract difference to the group
number. The last group was not included, for it was
performed immediately before the test session, typically
on the next day of the training session. There was no
evidence of improvement.
Figure 3C plots mean observed t1/T across subjects

against trial group for each timing condition. Improve-
ment in timing performance should have resulted in a
negative slope. At the 95% confidence level (Bonferroni
corrected for four conditions), only one slope of one
subject was significantly different from zero. Neither did
the timing performance worsen after the interval between
the training session and the test session. A one-tailed
Student’s t-test for each subject in each timing condition
revealed few differences between the mean absolute
deviation of the movement time of the 9th group and that
of the 10th group. Averaged across all the eight subjects,
only in 0.5 out of 4 conditions2 was the mean observed
t1/T of the 10th trial group further from the required t1/T
than that of the 9th trial group at the 95% confidence level
(Bonferroni corrected for four conditions).

The independence of the two movements

For each subject, we made two analyses to test the
spatial independence of movements for each timing or
value condition. First, we computed the correlation
between the coordinates of the first and second endpoints
separately for the parallel and perpendicular directions.
Second, we examined whether the probability of hitting or
missing one target depended on whether the other target
was hit.
At the 95% confidence level (Bonferroni corrected for

seven conditions), there was little or no correlation
between the two endpoints. Across the eight subjects,
only 0.75 out of 7 conditions in the parallel direction and
0.63 out of 7 conditions in the perpendicular direction
showed significant correlation and these correlations,
though significant, were small (no more than 0.31).

For each timing and value condition, we computed the
conditional probability of the second hit given the first
target was hit or missed. P(hit2jmiss1) is plotted against
P(hit2jhit1) in Figure 4 for each subject (in a unique
color). According to Pearson’s #2 test on the number of
hits or misses, at the 95% confidence level (Bonferroni
corrected for seven conditions), P(hit2jmiss1) differed
from P(hit2jhit1) only for two data points of two different
subjects in two different conditions (circled in Figure 4).
Put together, these two analyses demonstrate that the two
movements within a sequential movement can be treated
as independent, in agreement with the conclusions of Wu
et al. (2009).

Parameter estimation

We estimated the parameters in the dwell time
(Equation 3) and SAT (Equation 5) functions for each
subject. The subject was assumed to execute the same
timing planning when faced a certain timing condition in
the training session or a certain value condition in the test
session. Thus, each condition provided a data point.
Figure 5A gives the tdwell/T j T/t1 pairs and fitted line

of subject S01. The R2 of the eight subjects (in descending
order) were .95, .89, .86, .72, .67, .66, .64, and .61. The
median across subjects was .70.

Figure 4. Movement independence. The probability of hitting the
second target conditional on missing the first is plotted against
the probability of hitting the second target conditional on hitting
the first for each timing and value condition, for each subject. Each
color denotes the results for one subject. If the two movements
were independent, the data points should not depart significantly
from the identity line. We tested equality of the two conditional
probabilities using Pearson’s #2 test with Bonferroni correction for
seven conditions (overall .05 significance level corresponds to
corrected level .0071). Only two differences proved to be
significant (circled).
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For the SAT function, we used only data from the
training session to fit the line. Figures 5B and 5C shows
the results for subject S01. We noticed that, for most
subjects, the standard deviations in most conditions of the
test session were slightly smaller than what was predicted
by the fitted SAT line. We tested whether they in fact
were smaller by using a bootstrap method (Efron &
Tibshirani, 1993) to resample each condition and estimat-
ing the SAT function in the same way for 10,000 runs. At
the 95% confidence level (Bonferroni corrected for 14
data points), averaged across subjects, in the parallel
direction, 1 out of 8 conditions in the training session had
significantly smaller standard deviation than predicted,
while 3.3 out of 6 conditions in the test session had
significantly smaller standard deviations; in the perpen-
dicular direction, 0.5 out of 8 conditions in the training
session had significantly smaller standard deviation, while
4 out 6 conditions in the test session had significantly
smaller standard deviations.

Given this discrepancy, we based the SAT estimation
on the data of the constrained timing task rather than on
the data of both tasks.

Model comparison

After obtaining the dwell and SAT functions of a
subject, we searched for the maximum of the subject’s
expected gain function in each value condition. We
compared the subject’s observed t1/T with the optimal
t1/T that led to maximal expected gain. We used a bootstrap
method (Efron & Tibshirani, 1993) as follows to estimate
the 95% confidence interval (Bonferroni corrected for
three conditions) of the observed-optimal t1/T difference.
We ran a simulated experiment for 10,000 runs. In each
run, we resampled data for each condition in each group,
then estimated the parameters in the dwell time and SAT
functions, and finally searched for the maximum of the
subject’s expected gain function and estimated the optimal

Figure 5. Timing results for one subject (S01). (A) Mean observed ratio of dwell time to total time as a linear function of mean observed
ratio of total time to the first movement time. Each dot denotes a timing condition in the training session. Each star denotes a value
condition in the test session. (B) Standard deviation of the endpoint of a movement in the parallel directions (Ak) as a linear function of
mean movement speed. Each data point is a movement of a timing or value condition. Blue denotes the first reach. Green denotes the
second reach. Dots denote the training session. Stars denote the test session. We fit a line to the data of the training session. (C) Standard
deviation of the endpoint of a movement in the perpendicular directions (A6) as a linear function of mean movement speed. Same format
as Figure 5B. The test session standard deviations that are significantly smaller than those predicted by the fitted lines are circled.
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Figure 6. Model comparison of the timing strategy. (A) The predicted expected gain functions compared with observed performance in
each value condition for subject S01. Results for six of the other seven subjects resembled those for S01. None of these subjects varied
their time allocation across value conditions as predicted by the model. See text. (B) Mean observed t1/T plotted against optimal t1/T in
each value condition. Each panel corresponds to one subject. S02 was the subject who was partially aware of the hypothesis under test.
The data points for which observed t1/T did not significantly deviate from the optimal t1/T that would maximize expected gain are colored
black, otherwise, red. The error bars denoting the 95% confidence intervals (Bonferroni corrected for three conditions) are in most cases
smaller than the plotting symbols. The range of t1/T observed in training is marked in gray.
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t1/T. We used bootstrap methods based on 10,000
simulations (Efron & Tibshirani, 1993) to calculate 95%
confidence intervals for these estimates.
Subject S01’s modeled expected gain functions and

observed performance in each value condition are plotted
in Figure 6A. The results for six additional subjects were
similar to those of S01: they seemed not to vary their t1/T
ratio at all.
Each subject’s mean observed t1/T ratio in each value

condition is plotted in Figure 6B against the subject’s
model-predicted optimal t1/T ratio, with “optimal” data
points in black and “suboptimal” ones in red. An observed
t1/T ratio is labeled3 “optimal” if it did not significantly
deviate from optimal t1/T at the 95% confidence level
(Bonferroni corrected for three conditions) according to
the bootstrap test; otherwise, “suboptimal.”
The preferred ratio and available t1/T range as shown in

the training session are also presented. Two points should
be highlighted for Figure 6B: First, all but one subject did
not vary their time allocation (the three points fall on a
horizontal line). Second, most subjects’ observed t1/T
ratios were close to their preferred ratio in training. The
remaining subject S02 (upper row, center) was the subject
who was partially aware of the hypothesis under test. He
did vary time allocation but two of his three time
allocations are significantly different from optimal.

Efficiency

Efficiency was defined as the average score of a trial in a
condition divided by the maximal expected gain of the
condition. In the computation of expected gain (Equation 2),
P(V) was computed for each subject and each value
condition as the proportion of trials in the test session in
which the time limit was not exceeded. For each subject,
we computed the 95% confidence interval (Bonferroni
corrected for three conditions) of efficiency using the
method for computing observed-optimal t1/T difference
confidence interval as described earlier. Figure 7 shows the
data. To our surprise, almost no efficiencies were signifi-
cantly smaller than one, and some were even significantly
larger than one.
We considered the possibility that the benefit to subjects

of varying timing was so small, in terms of reward, that
subjects had little reason to vary timing. We used the SAT
model to predict the expected gain that would result from
the subject’s actual choice of timing allocation and
compared this to the predicted maximum expected gain
(with optimal choice of timing allocation). We expressed
the difference as a percentage of the predicted maximum
expected gain.
The predicted costs of allocating time as the subjects

did were a reduction of expected gain in at least one
condition of 7%, 4%, 10%, 13%, 64%, 26%, 22%, and
10%, respectively, for S01–S08. S05, for example, chose
an allocation of time in the (10, 50) condition that would
result in a reduction of her winnings in that condition of

64% if the SAT model correctly predicted her expected
gain. If we exclude S02 (who did vary timing and had a
correspondingly low reduction of only 4%), the median
percentage loss across subjects is 13%.
Thus, based on our SAT model, we predict that

subjects’ lack of variation in timing as we varied reward
should have cost them about one dollar out of every eight.
The actual results (Figure 7) suggest otherwise and this
discrepancy is the focus of the remainder of the article.
An aside: We know of no general rule for deciding

whether a difference such as 13% is large enough to affect
behavior. “Flatness [of the reward function near the
maximum] is not a mathematical but a psychological
concept. 5% loss may be substantial for one decision
maker and negligible for another” (von Winterfeldt &
Edwards, 1973). However, the results in Figure 7 together
with the results of Experiment 2 below will suggest that
the outcome of Experiment 1 is not simply the result of an
insensitivity to reward.

Experiment 2: The cost of
constrained time allocation

In Experiment 1, subjects completed 800 trials in an
constrained timing task before completing a decision task
similar to that of Wu et al. (2009) in which they could
pick whatever allocation of time they wished (choice

Figure 7. Efficiency. Efficiency for subjects in the test session. The
error bars mark 95% confidence intervals (Bonferroni corrected
for three conditions).

Journal of Vision (2010) 10(6):1, 1–17 Zhang, Wu, & Maloney 10



timing task). The constrained timing task demonstrated
subjects’ ability to divide up movement time arbitrarily
and should have given them opportunity to observe how
their own accuracy varied with the duration of each
movement. However, we found that, even after the 800
trials of training, subjects did not vary their timing in the
choice timing decision task.
However, we hesitated to conclude people are subopti-

mal movers in sequential movements because of a puzzle
that emerged in the results. Although subjects did not vary
their time allocation, their winnings in the choice timing
decision task were typically better than what we predicted
given their performance in the constrained timing training
task. The key deviation is visible in Figure 5C where the
measured standard deviations in the choice timing
decision task (“test”) are somewhat lower than predicted
given the results of the constrained timing training trials
by about 23%.
In Experiment 2, we tested the possibility that, when

people try to actively divide up movement time, their spatial
accuracy is thereby reduced. We asked subjects to complete
a choice timing decision task essentially identical to that in
Experiment 1. We then asked subjects to complete a
constrained timing task where they were asked to allocate
movement time in a pre-specified way. However, unlike the
constrained timing task in Experiment 1, the required
timing was not arbitrary but was the actual timing exhibited
by the subject in the choice timing task.
Intuitively, in the constrained timing task, we are

requiring subjects to allocate time as they freely chose to
allocate it in the choice timing task. We are in effect
constraining them to do what they would have done
anyway. By comparing people’s performance in the
constrained timing task with that in the corresponding
choice timing task, we can directly estimate the cost of
constrained time allocation, if any.

Methods
Apparatus

The same as Experiment 1.

Stimuli

Stimuli in the choice timing task were the same as those
in the choice timing task of Experiment 1. Stimuli in the
constrained timing task were almost the same as those in
the constrained timing task of Experiment 2, except that
the widths of time windows were 40 ms and there were no
central triple reward areas on the time bar.

Procedure

All subjects took part in two 40-min sessions run on two
successive days. Each session consisted of eight blocks of
50 trials, i.e., 2 days � 8 blocks � 50 trials = 800 trials in

total. There were, in order, two blocks of the choice
timing task, two blocks of the constrained timing task,
then two more blocks for the choice timing task, then two
more blocks for the constrained timing task. In one
session, the values of the targets were (10, 10) points; in
the other, (10 50) points. The order of the two sessions
was counterbalanced across subjects. As in Experiment 1,
subjects received US/1 for every 1000 points they
collected in a session.
The procedures of the choice timing and constrained

timing tasks were essentially those of the choice timing
and constrained timing tasks of Experiment 1. In the
choice timing task, the subject was rewarded for hits only
if she completed her movements before 640 ms. In the
constrained timing task, the subject needed to arrive at the
two targets within two specified time windows. The time
windows of a trial in a constrained timing block were
centered at the mean arrival times of the trials in the two
immediately preceding choice timing blocks. Trials with
total movement time longer than 1000 ms were excluded
in computing these means.
At the beginning of each session, there were one choice

timing and one constrained timing practice blocks, both of
50 trials, with the required timings of the latter taken from
the recorded timings of the former.

Subjects

Four subjects, two female and two male, participated.
All were unaware of the hypotheses under tests and none
had participated in the previous experiment. All subjects
were right-handed and had normal or corrected-to-normal
vision. Informed consent was given by the subject prior to
the experiment. The subject received US/20 for the time
and a performance-related bonus. Total payment, includ-
ing a bonus based on points earned, ranged from US/28 to
US/34 across subjects.

Results

Trials with either endpoint out of the outer circle or
with a total movement time greater than 1000 ms were
excluded from the analysis. No more than 4.5% trials were
excluded for any subject.

The expected gain ratio of choice timing to constrained
timing

We wished to test whether the expected gain of a choice
timing task is higher than the spatial accuracy of its
matched constrained timing task and, if it is higher, to
estimate how much higher. As a between-block design
was used, we found it convenient to present the data in
units of block or “super-block” (defined below) so that
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any systematic variation across time other than the
manipulated variations would be readily visible.
Figures 8A and 8B present the data of a typical subject,

S03. Every two adjacent choice timing blocks or con-
strained timing blocks were grouped as a “super-block” and
each data point has a label F(ree) or A(ctive). Figure 8A
plots the probability of hit of the first and second targets
against super-block index. We computed expected gain as
the weighted sum of the probability of hit multiplied by
the target value and computed the ratios of expected gain
of choice timing to that for constrained timing in each
value condition, which, for subject S03, were 1.02 and
1.40 in the (10 10) and (10 50) value conditions.
However, before concluding that choice timing boosted

S03’s expected gain, we need to compensate for any
differences in movement time in the choice timing and the
constrained timing tasks, as shown in Figure 8B. These
differences by themselves might lead to changes in spatial
variation, accuracy and expected gain.
The way we compensated for the time difference was to

fit the relationship between spatial variance and move-
ment time, substitute the constrained timing movement
times with their choice timing counterparts, and generate
spatial variances for them from the model. Then, based on
this spatial variance, we computed the predicted proba-
bility of hitting a target and the corresponding expected
gain. As in Experiment 1, we took advantage of the linear
relation between the standard deviation of endpoints and
movement speed. We computed the linear function
separately for each value and timing condition and
separately for the parallel and perpendicular directions.

Figure 8. Subject S03’s data. (A) The mean probability of hitting each target separately for each super-block. (B) Mean movement time for
each target by super-block. Legends (10 10) and (10 50) denote the two value conditions. F denotes the choice timing condition. A
denotes the constrained timing condition.

Figure 9. Cost of constrained time allocation for each subject. The
dependent variable is the predicted ratio of expected gain in the
choice timing condition to expected gain in the constrained timing
condition when the movement times of the two are made
equivalent. A value greater than one means that there is a cost
in the constrained timing condition relative to the choice timing
condition. In the (10 50) value condition, the expected gain ratio is
significantly greater than one for all subjects. Error bars denote
the 95% confidence interval, Bonferroni corrected for two con-
ditions. Requiring the subjects to move with the same pattern of
timings as they would otherwise have freely chosen reduced their
performance by 5–28% (mean value 17%).
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The corrected expected gain ratio of choice timing to
constrained timing is shown in Figure 9. Its 95%
confidence interval (Bonferroni corrected for two con-
ditions) was obtained with a bootstrap method (Efron &
Tibshirani, 1993) by simulating the experiment for 10,000
times and using the procedure described above to compute
expected gain.
For the four subjects, 6 out of 8 expected gain ratios

were significantly greater than one; none was significantly
lesser than one; the mean values for (10 10) and (10 50)
value conditions were 1.21 and 1.22, respectively. Thus,
we find that the cost in expected gain of constrained time
allocation is about 17% for the conditions in these
experiments. The cost in movement error standard devia-
tion was an increase of 18%.
In Experiment 1, the efficiency was the ratio of the

expected gain of the choice timing task over the expected
gain predicted by a model fitted with performances in the
constrained timing task, a task with time constraints for
both targets as the constrained timing task had. We can
explain the superior efficiency in Experiment 1 as the
result of an amplification factor similar to the expected
gain ratio of choice timing to constrained timing.

The practice/fatigue effect

As described in the Procedure section, each session of
the experiment was organized into eight blocks of a fixed
sequence: First two choice timing blocks, then two
constrained timing blocks, then two choice timing blocks,
last two constrained timing blocks. That is, on average,
constrained timing trials were two blocks behind choice

timing trials. This leaves open the possibility that the
greater-than-one expected gain ratio of choice timing to
constrained timing might result from a fatigue effect,
which would weaken our argument that it is the
consequence of the cost of constrained time allocation.
To estimate the practice/fatigue effect, we computed the

expected gain ratio of the four early blocks to the four late
blocks in each session with the data of probability of hit.
We used a bootstrap method (Efron & Tibshirani, 1993),
resampling 10,000 times to estimate its 95% confidence
interval (Bonferroni corrected for two conditions). Figure 10
shows the results. The fatigue effect, if any, was balanced
or a little outweighed by the reverse practice effect. Among
the eight ratios, none was significantly greater than one;
three were significantly but slightly less than one. There-
fore, the cost of constrained time allocation could not be
attributed to fatigue.

Discussion

There is an intimate connection between action and
reward. By systematically varying rewards and punish-
ments in visuo-motor tasks, we pose problems to the
movement planning system and, in doing so, we can
potentially reveal aspects of movement planning not
otherwise observable.
There are now several studies where experimenters

impose rewards and punishments on possible outcomes in
motor tasks and evaluate how close subjects come to
maximizing expected gain (Hudson, Maloney, & Landy,
2008; Trommershäuser, Gepshtein, Maloney, Landy, &
Banks, 2005; Trommershäuser, Landy, & Maloney, 2006;
Trommershäuser, Maloney, & Landy, 2003a, 2003b).
Overall, the results of these studies give the impression
that people are nearly optimal movers even when they
have little experience in a particular motor task. Con-
sequently, the large, qualitative failures observed in Wu
et al. (2009) are striking.
In that study, subjects were asked to allocate time

between two successive reaching movements to targets as
the experimenter varied the rewards associated with
hitting the targets. Subjects either did not vary their
allocation of time or varied it in the wrong direction even
when one target was as much as five times more valuable
than the other. In related experiments involving only a
single reaching movement, subjects did vary the time
allocated to the movement so as to maximize their
performance (Battaglia & Schrater, 2007; Dean et al.,
2007; Hudson et al., 2008).
In Experiment 1, we considered the possibility that the

observed failures in allocating time were the consequence
of a lack of experience with allocating time between
movements. If so, a session of motor practice before the
motor decision task should move human performance
toward optimal performance, maximizing expected gain.

Figure 10. Practice/fatigue effect for each subject. The dependent
variable is the expected gain ratio of the four early blocks to the
four late blocks in each session. A value greater than one
indicates a fatigue effect. Values less than one are consistent
with a practice effect. Error bars denote the 95% confidence
interval, Bonferroni corrected for two conditions.
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In the first part of the experiment, we trained subjects to
divide up the total movement time in different ways
(constrained timing task). They were able to do so (but see
below) and in doing so they could observe the con-
sequences of varying timing on their accuracy in both
movements. However, in the second part of the experi-
ment, when they were left to choose a timing strategy,
they did not vary their allocation of time between targets.
We observed a similar pattern of failures to that observed
by Wu et al. (2009). Training with the constrained timing
task did not lead to improved performance in the choice
timing task.
One interesting finding of Experiment 1 was that when

people attempt to divide the movement time of the
sequential movements in a constrained ratio, their actual
division regresses to a certain ratio that is very close to the
ratio in their spontaneous time division. This outcome
hinted that subjects resist varying time allocation away
from a specific default value, their preferred ratio. A
second interesting finding is that the dwell times (the time
subjects spent in contact with the first target before
initiating the second movement) had a simple reciprocal
relation to the proportion of time allocated to the first
movement.
A third intriguing phenomenon revealed by Experiment 1

is the unusually high efficiencies found. Even though
subjects did not vary their time allocation between the
two movements, their winnings were not reduced as much
as we predicted they would be. Battaglia and Schrater
(2007) reported a similar phenomenon. Their task was to
reach a target within a time limit for monetary rewards.
The exact position of the target was hidden, and the
location of the hidden target was signaled to the observer
by dots sampled from an isotropic bivariate Gaussian
distribution whose mean was the hidden target location.
Subjects viewed the distribution of the dots, judged the
target position, and then made the reach. The number of
dots increased at a fixed rate after a trial began until the
reach was initiated. Given the limited total time, there was
a tradeoff between viewing time and movement time.
Subjects out-performed predicted maximal expected gain
although their time tradeoff significantly deviated from the
optimal one predicted by the model. Battaglia and Schrater
attributed the unexpectedly good performance to “increased
participant motivation” for the experimental task than the
baseline task. But they were still puzzled with the larger
movement time variability in the experimental task, which
could not be the result of higher motivation.
In our case, a motivation-difference explanation is

untenable because our subjects were rewarded in both
the training and test sessions. We considered a second
explanation, that constraining time allocation reduces
spatial accuracy of movements. We confirmed this
possibility in Experiment 2 by comparing the performance
in two conditions that differed only in that time allocation
was constrained in one but not in the other. In the
constrained time condition we required subjects to carry

out the movement with the timings that they would have
freely chosen had the choice of time allocation been left
up to them. We found that there was a cost of constraining
time allocation that, in our task, was about a 17%
reduction in expected gain.
Based on previous work concerning single movements

(Carlton, 1994; Zelaznik, Mone, McCabe, & Thaman,
1988), we might expect that smaller spatial variance
comes only at a cost of larger temporal variance. As
shown in Figure 11, this is not the case. In Figure 11, we
plot the temporal standard deviation for subjects and
conditions in both Experiments 1 and 2. For each
experiment, we ran a repeated-measures one-way
ANOVA for all its constrained timing and choice timing
conditions. For Experiment 2, there is no significant
difference among conditions, F(3, 9) = 0.56, p = .66.
For Experiment 1, the effect of condition is significant,
F(6, 42) = 15.12, p G .001, but as a Tukey’s HSD test
shows, the significant differences are either between two
constrained timing conditions, or between choice and
constrained conditions with the standard deviation of a
choice timing condition significantly less than that of a
constrained timing condition, exactly the reverse of what
we might expect given previous work. Subjects achieve
higher spatial accuracy without detectable decreases in
temporal accuracy (Experiment 2) or even with increases
in temporal accuracy (Experiment 1).
We are left with two questions: Why does choice time

allocation in sequential reaching movements improve the
spatial accuracy of reaching without a concomitant
decrease in temporal accuracy? And why do subjects not
vary their time allocation as we vary reward? We address
these two questions next.
Soechting and Flanders (1998) emphasized that impos-

ing different constraints on motor dynamics may lead the
motor system to adopt qualitatively different solutions for
motor control. That is, the motor system can switch
“motor strategies” in response to changes in task demands.
In a recent paper, for example, Welchman, Stanley,
Schomers, Miall, and Bülthoff (2010) found that move-
ments made in reaction to an opponent’s movements are
faster than movements initiated voluntarily. They argue
that different movement types have different neural bases.
While there may be a fixed relation between speed and

accuracy for any one strategy, the relation between speed
and spatial or temporal accuracy for movements generated
by two different strategies is less clear.
Meyer, Smith, and Wright (1982) considered the

different functional forms of speed–accuracy tradeoff
found by Fitts (1954) and Schmidt, Zelaznik, and Frank
(1978; Schmidt et al., 1979). Fitts constrained spatial
accuracy and asked subjects to maximize speed. He found
that the relation between speed and accuracy was
logarithmic in form, a relationship known as Fitts’ Law.
Schmidt et al. constrained speed and asked subjects to be
as spatially accurate as possible. They found an SAT that
was linear in form, not logarithmic.
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Meyer et al. (1982) conjecture that the different forms
of SAT, linear and logarithmic, resulted from the use of
different motor strategies (models): the symmetric impulse
variability model and the overlapping impulse model.
The symmetric impulse variability model assumes that a

reaching movement is produced by generating a single
force pulse whose cycle runs from the start to the end of
the movement. Both spatial and temporal uncertainty are
determined by the choice of force pulse and increase
linearly.
The overlapping impulse model assumes that a reach is

the result of a series of small, overlapping force pulses.
The model allows for the possibility of multiple spatial
corrections during the reach and a consequent reduction of
spatial uncertainty. Meyer et al. (1982) show that the
logarithmic SAT (Fitts’ Law) is a consequence of
adopting this model.
Similarly, Bye and Neilson (2008) proposed their

BUMP model of motor control which includes two motor
control strategies: fixed horizon control and receding
horizon control. The basic assumption of the BUMP
model is that movement control is a discrete-time process
consisting of multiple intervals. In each interval, typically
100–200 ms, motor commands for the incoming move-
ment stage are computed. When a movement is close to its
end, the fixed horizon control and the receding horizon
control differ in whether the motor commands generated
in each interval are supposed to end at a specific time. The
fixed horizon control allows more accurate control of
timing but poses a more difficult computational problem

than the receding horizon control. Interpreting our results
by the BUMP model, we conjecture that choice time
allocation in sequential movements induces receding
horizon control while constrained time allocation leads
to fixed horizon control.
Todorov and Jordan (2002; Todorov, 2004) and others

(Diedrichsen & Gush, 2009) conjecture that the motor
system could minimize the effort of motor control by
allowing variances in task-irrelevant dimensions to
increase. It implies an effective switch of motor control
strategy in the face of different task situations.
In the constrained timing trials, we were able to model

the SATs for two successive movements as we changed
the constraints on timing. But when the timing constraint
was removed altogether, subjects reached with greater
spatial accuracy than we would expect based on their
performance in the constrained task. We conjecture that
this change in SAT corresponds to a shift in motor
strategy, a shift in how the reaching movement is
generated and controlled.
What is unusual about the observed speed and accuracy

in the choice timing conditions is that subjects (with one
exception) do not vary mean timing as we vary the
rewards associated with successful completion of the first
or second reaching movement. We conjecture that they
cannot. That is, the movement they adopt for the choice
timing task is generated by a privileged motor strategy
that, given the conditions of our experiment, can divide
time between the two movements in only one ratio, the
one observed.

Figure 11. Temporal movement uncertainty. The standard deviation of t1. The effort to constrain t1 to a specified time window, as in the
constrained timing conditions of Experiment 1 or 2, did not lead to a smaller standard deviation than when there was no need to control t1.
Each gray dot above a condition of Experiment 1 or 2 denotes the data of a subject under that condition. The bars shown serve to group
conditions. The height of each bar is the mean across the conditions grouped. Yellow bars group the constrained timing conditions. White
bars group the choice timing conditions. The error bars mark the 95% confidence intervals of the means.
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That is, the privileged timing strategy achieves a higher
spatial accuracy for the same speed as the constrained
timing strategy, but, with this strategy, the motor system
has no freedom in allocating time between the two
movements. Only one time division is possible. We
further conjecture that the privileged time allocation
corresponds to the preferred time durations identified in
analyzing the constrained timing data of Experiment 1.
If our conjecture concerning two strategies is valid, then

we may schematize the possible speed–accuracy tradeoffs
available to the subject: a range of SATs available through
constrained timing where accuracy smoothly increases
with increased time duration of each of two movements
and an isolated point, corresponding to the privileged
timing strategy with only one possible allocation of times
between the two movements.
If the privileged strategy leads to higher spatial

accuracy than the constrained at every speed across the
range employed in the experiment, then it is always the
strategy to employ in order to maximize expected gain in
Experiment 1. The subject maximizing expected gain
should not vary timing as we vary reward over the range
of rewards employed and speeds evoked and that is what
(with one exception) they did.
If this analysis is correct, then subjects did err but in

only one respect. In the constrained timing task in
Experiment 2, they should have employed the same
movement strategy as they did in the choice timing task.
It may be that subjects knew that the privileged motor
strategy led to greater spatial accuracy than the con-
strained but incorrectly believed that it led to lower
temporal accuracy as well. Thus, when the instructions put
an emphasis on time, subjects used the constrained motor
strategy, intending to sacrifice spatial accuracy for
temporal accuracy. They did not know the sacrifice was
in vain.
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Footnotes

1
The confidence limits on linear regression parameters

are typically calculated in closed form based on the

assumption that the distribution of errors is Gaussian
(Draper & Smith, 1998, p. 34ff). Examination of QQ plots
(Gnanadesikan & Wilks, 1968) of the observed t1/T values
separately for each timing condition and each subject
indicates that the distribution of errors, in many cases,
deviated from Gaussian. Accordingly, we calculated
confidence limits on regression slope estimates using
bootstrap (resampling) methods (Efron & Tibshirani,
1993) since these methods are less sensitive to failures
of distributional assumptions. We also repeated all
analyses of hypotheses concerning regression slopes,
computing the confidence limits in the usual way, and
reached the same conclusions as we reached using
bootstrap methods.

2
That is, 4 out the 32 conditions (4 conditions for each

of 8 subjects).
3
We use “optimal” and “suboptimal” as convenient,

short labels. We do not mean to imply that failing to reject
the null hypothesis of optimality implies that a subject’s
performance is optimal.
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